
GraphQL Compiler

Jun 02, 2021

Contents

1 Getting Started 3
1.1 Generating the necessary schema info . 3
1.2 Query Compilation and Execution . 4

2 Features 5
2.1 Language Specification . 5
2.2 Supported Databases . 32
2.3 Advanced Features . 37
2.4 About GraphQL compiler . 44

i

ii

GraphQL Compiler

GraphQL compiler is a library that simplifies data querying and exploration by exposing one simple query language
to target multiple database backends. The query language is:

Written in valid GraphQL syntax Since it uses GraphQL syntax, the user get access to the entire GraphQL ecosys-
tem, including the typeahead capabilities and query validation capabilities of GraphiQL, user friendly error
messages from the reference GraphQL python implementation, and more.

Directly compiled to the target database language By compiling instead of interpreting the query language, the
compiler highly improves query performance and empowers the user with the ability to write deep and complex
queries. Furthermore, by using schema information from the target database, the compiler is able to extensively
validate queries, often more so than the DB-API, (e.g. pymssql).

Contents 1

https://github.com/graphql/graphiql

GraphQL Compiler

2 Contents

CHAPTER 1

Getting Started

1.1 Generating the necessary schema info

To use GraphQL compiler the first thing one needs to do is to generate the schema info from the underlying database
as in the example below. Even though the example targets an OrientDB database, it is meant as a generic schema info
generation example. See the homepage of your target database for more instructions on how to generate the necessary
schema info.

from graphql_compiler import (
get_graphql_schema_from_orientdb_schema_data

)
from graphql_compiler.schema_generation.orientdb.utils import ORIENTDB_SCHEMA_RECORDS_
→˓QUERY

client = your_function_that_returns_a_pyorient_client()
schema_records = client.command(ORIENTDB_SCHEMA_RECORDS_QUERY)
schema_data = [record.oRecordData for record in schema_records]
schema, type_equivalence_hints = get_graphql_schema_from_orientdb_schema_data(schema_
→˓data)

In the snippet above the are two pieces of schema info:

• schema which represents the database using GraphQL’s type system.

• type_equivalence_hints which helps deal with GraphQL’s lack of concrete inheritance, (see schema
types for more info).

When compiling, these will need to be bundled in a CommonSchemaInfo object.

Besides representing the database schema, a GraphQL schema includes other metadata such as a list of custom scalar
types used by the compiler. We’ll talk more about this metadata in schema types. For now let’s focus on how a database
schema might be represented in a GraphQL schema:

type Animal {
name: String

(continues on next page)

3

GraphQL Compiler

(continued from previous page)

out_Animal_LivesIn: [Continent]
}

type Continent {
name: String
in_AnimalLivesIn: [Animal]

}

In the GraphQL schema above:

• Animal represents a concrete, (non-abstract), vertex type. For relational databases, we think of tables as the
concrete vertex types.

• name is a property field which represents a property of the Animal vertex type. Think of property fields as
leaf fields that represent concrete data.

• out_Animal_LivesIn is a vertex field which represents an outbound edge to a vertex type in the graph.
For graph databases, edges can be automatically generated from the database schema. However, for relational
databases, edges currently have to be manually specified. See SQL for more information.

1.2 Query Compilation and Execution

Once we have the schema info we can write the following query to get the names of all the animals that live in Africa:

graphql_query = """
{

Animal {
name @output(out_name: "animal_name")
out_Animal_LivesIn {

name @filter(op_name: "=", value: ["$continent"])
}

}
}
"""
parameters = {'continent': 'Africa'}

There are a couple of things to notice about queries:

• All queries start with a vertex type, (e.g. Animal), and expand to other vertex types using vertex fields.

• Directives specify the semantics of a query. @output indicates the properties whose values should be returned.
@filter specifies a filter operation.

Finally, with the GraphQL query and its parameters at hand, we can use the compiler to obtain a query that we can
directly execute against OrientDB.

from graphql_compiler import graphql_to_match

compilation_result = graphql_to_match(
schema, graphql_query, parameters, type_equivalence_hints)

Executing query assuming a pyorient client. Other clients may have a different
→˓interface.
print([result.oRecordData for result in client.query(query)])
[{'animal_name': 'Elephant'}, {'animal_name': 'Lion'}, ...]

4 Chapter 1. Getting Started

CHAPTER 2

Features

2.1 Language Specification

To learn more about the language specification see:

• Definitions, for the definitions of key terms that we use to define the language.

• Schema Types, for information about the full breadth of schema types that we use to represent database schemas
and how to interact with them using GraphQL queries.

• Query Directives, to learn more about the available directives and how to use them to create powerful queries.

2.1.1 Definitions

• Vertex field: A field corresponding to a vertex in the graph. In the below example, Animal and
out_Entity_Related are vertex fields. The Animal field is the field at which querying starts, and is
therefore the root vertex field. In any scope, fields with the prefix out_ denote vertex fields connected by an
outbound edge, whereas ones with the prefix in_ denote vertex fields connected by an inbound edge.

{
Animal {

name @output(out_name: "name")
out_Entity_Related {

... on Species {
description @output(out_name: "description")

}
}

}
}

• Property field: A field corresponding to a property of a vertex in the graph. In the above example, the name
and description fields are property fields. In any given scope, property fields must appear before vertex
fields.

5

GraphQL Compiler

• Result set: An assignment of vertices in the graph to scopes (locations) in the query. As the database processes
the query, new result sets may be created (e.g. when traversing edges), and result sets may be discarded when
they do not satisfy filters or type coercions. After all parts of the query are processed by the database, all
remaining result sets are used to form the query result, by taking their values at all properties marked for output.

• Scope: The part of a query between any pair of curly braces. The compiler infers the type of each scope. For
example, in the above query, the scope beginning with Animal { is of type Animal, the one beginning with
out_Entity_Related { is of type Entity, and the one beginning with ... on Species { is of type
Species.

• Type coercion: An operation that produces a new scope of narrower type than the scope in which it exists. Any
result sets that cannot satisfy the narrower type are filtered out and not returned. In the above query, ... on
Species is a type coercion which takes its enclosing scope of type Entity, and coerces it into a narrower
scope of type Species. This is possible since Entity is an interface, and Species is a type that implements
the Entity interface.

2.1.2 Schema Types

A GraphQL schema might look like the one below. Do not be intimidated by the number of components since we will
immediately proceed to dissect the schema.

schema {
query: RootSchemaQuery

}

type RootSchemaQuery {
Animal: [Animal]
Entity: [Entity]
Food: [Food]
Species: [Species]
Toy: [Toy]

}

directive @filter(op_name: String!, value: [String!]) on FIELD | INLINE_FRAGMENT

directive @tag(tag_name: String!) on FIELD

directive @output(out_name: String!) on FIELD

directive @output_source on FIELD

directive @optional on FIELD

directive @recurse(depth: Int!) on FIELD

directive @fold on FIELD

scalar Date

scalar DateTime

scalar Decimal

type Animal implements Entity {
_x_count: Int
uuid: ID

(continues on next page)

6 Chapter 2. Features

GraphQL Compiler

(continued from previous page)

name: String
alias: [String]
color: String
birthday: Date
net_worth: Decimal
in_Animal_ParentOf: [Animal]
out_Animal_ParentOf: [Animal]
in_Entity_Related: [Entity]
out_Entity_Related: [Entity]
out_Animal_OfSpecies: [Species]
out_Animal_PlaysWith: [Toy]

}

type Food implements Entity {
_x_count: Int
uuid: ID
name: String
alias: [String]
in_Entity_Related: [Entity]
out_Entity_Related: [Entity]
in_Species_Eats: [Species]

}

type Species implements Entity {
_x_count: Int
uuid: ID
name: String
alias: [String]
in_Animal_OfSpecies: [Animal]
in_Entity_Related: [Entity]
out_Entity_Related: [Entity]
in_Species_Eats: [Species]
out_Species_Eats: [Union__Food__Species]

}

type Toy {
_x_count: Int
uuid: ID
name: String
in_Animal_PlaysWith: [Animal]

}

interface Entity {
_x_count: Int
uuid: ID
name: String
alias: [String]
in_Entity_Related: [Entity]
out_Entity_Related: [Entity]

}

union Union__Food__Species = Food | Species

Note: A GraphQL schema can be serialized with the print_schema function from the graphql.utils.
schema_printer module.

2.1. Language Specification 7

GraphQL Compiler

Objects types and fields

The core components of a GraphQL schema are GraphQL object types. They conceptually represent the concrete
vertex types in the underlying database. For relational databases, we think of the tables as the concrete vertex types.

Lets go over a toy example of a GraphQL object type:

type Toy {
_x_count: Int
name: String
in_Animal_PlaysWith: [Animal]

}

Here are some of the details:

• _x_count: is a meta field. Meta fields are an advanced compiler feature.

• name is a property field that represents concrete data.

• in_Animal_PlaysWith is a vertex field representing an inbound edge.

• String is a built-in GraphQL scalar type.

• [Animal] is a GraphQL list representing a list of Animal objects.

Directives

Directives are keywords that modify query execution. The compiler includes a list of directives, which we’ll talk about
more in the query directives section. For now lets see how they are defined by looking at an example:

directive @output(out_name: String!) on FIELD

• @output defines the directive name.

• out_name: String! is a GraphQL argument. The ! indicates that it must not be null.

• on FIELD defines where the directive can be located. According to the definition, this directive can only be
located next to fields. The compiler might have additional restrictions for where a query can be located.

Scalar types

The compiler uses the built-in GraphQL scalar types as well as three custom scalar types:

• DateTime represents timezone-naive second-accuracy timestamps.

• Date represents day-accuracy date objects.

• Decimal is an arbitrary-precision decimal number object useful for representing values that should never be
rounded, such as currency amounts.

Operation types

GraphQL allows for three operation types query, mutation and subscription. The compiler only allows for read-only
query operation types as shown in the code snippet below:

schema {
query: RootSchemaQuery

}

8 Chapter 2. Features

https://graphql.org/learn/schema/#scalar-types

GraphQL Compiler

A query may begin in any of the root vertex types specified by the special RootSchemaQuery object type:

type RootSchemaQuery {
Animal: [Animal]
Entity: [Entity]
Food: [Food]
Species: [Species]
Toy: [Toy]

}

Inheritance

The compiler uses interface and union types in representing the inheritance structure of the underlying schema. Some
database backends do not support inheritance, (e.g. SQL), so this feature is only supported for certain backends.

Interface types

Object types may declare that they implement an interface type, meaning that they contain all property and vertex fields
that the interface declares. In many programming languages, this concept is called interface inheritance or abstract
inheritance. The compiler uses interface implementation in the GraphQL schema to model the abstract inheritance in
the underlying database.

interface Entity {
_x_count: Int
name: String
alias: [String]
in_Entity_Related: [Entity]
out_Entity_Related: [Entity]

}

type Food implements Entity {
_x_count: Int
name: String
alias: [String]
in_Entity_Related: [Entity]
out_Entity_Related: [Entity]
in_Species_Eats: [Species]

}

Querying an interface type without any type coercion returns all of the the objects implemented by the interface. For
instance, the following query returns the name of all Food, Species and Animal objects.

{
Entity {

name @output(out_name: "entity_name")
}

}

Union types and type_equivalence_hints

GraphQL’s type system does not allow object types to inherit other object types (i.e. it has no notion of concrete
inheritance). However, to model the database schema of certain backends and to emit the right query in certain cases,
the compiler needs to have a notion of the underlying concrete inheritance.

2.1. Language Specification 9

GraphQL Compiler

In order to work around this limitation, the GraphQL compiler uses GraphQL union types as means of listing the
subclasses of an object with multiple implicit subclasses. It also takes in a type_equivalence_hints parameter
to match an object type with the union type listing its subclasses.

For example, suppose Food and Species are concrete types and Food is a superclass of Species in an OrientDB
schema. Then the GraphQL schema info generation function would generate a union type in the schema

union Union__Food__Species = Food | Species

as well an entry in type_equivalence_hints mapping Food to Union_Food_Species.

To query an union type, one must always type coerce to one of the encompassed object types as illustrated in the
section below.

Type coercions

Type coercions are operations than can be run against interfaces and unions to create a new scope whose type is
different than the type of the enclosing scope of the coercion. Type coercions are represented with GraphQL inline
fragments.

Example Use

{
Species {

name @output(out_name: "species_name")
out_Species_Eats {

... on Food {
name @output(out_name: "food_name")

}
}

}
}

Here, the out_Species_Eats vertex field is of the Union__Food__FoodOrSpecies__Species
union type. To proceed with the query, the user must choose which of the types in the
Union__Food__FoodOrSpecies__Species union to use. In this example, ... on Food indicates
that the Food type was chosen, and any vertices at that scope that are not of type Food are filtered out and discarded.

{
Species {

name @output(out_name: "species_name")
out_Entity_Related {

... on Species {
name @output(out_name: "entity_name")

}
}

}
}

In this query, the out_Entity_Related is of Entity type. However, the query only wants to return results
where the related entity is a Species, which ... on Species ensures is the case.

10 Chapter 2. Features

GraphQL Compiler

Constraints and Rules

• Must be the only selection in scope. No field may exist in the same scope as a type coercion. No scope may
contain more than one type coercion.

Meta fields

Meta fields are fields that do not represent a property/column in the underlying vertex type. They are also an advanced
compiler feature. Before continuing, readers should familiarize themselves with the various query directives supported
by the compiler.

__typename

The compiler supports the standard GraphQL meta field __typename, which returns the runtime type of the scope
where the field is found. Assuming the GraphQL schema matches the database’s schema, the runtime type will always
be a subtype of (or exactly equal to) the static type of the scope determined by the GraphQL type system. Below, we
provide an example query in which the runtime type is a subtype of the static type, but is not equal to it.

The __typename field is treated as a property field of type String, and supports all directives that can be applied
to any other property field.

Example Use

{
Entity {

__typename @output(out_name: "entity_type")
name @output(out_name: "entity_name")

}
}

This query returns one row for each Entity vertex. The scope in which __typename appears is of static type
Entity. However, Animal is a type of Entity, as are Species, Food, and others. Vertices of all subtypes of
Entity will therefore be returned, and the entity_type column that outputs the __typename field will show
their runtime type: Animal, Species, Food, etc.

_x_count

The _x_count meta field is a non-standard meta field defined by the GraphQL compiler that makes it possible to
interact with the number of elements in a scope marked @fold. By applying directives like @output and @filter
to this meta field, queries can output the number of elements captured in the @fold and filter down results to select
only those with the desired fold sizes.

We use the _x_ prefix to signify that this is an extension meta field introduced by the compiler, and not part of the
canonical set of GraphQL meta fields defined by the GraphQL specification. We do not use the GraphQL standard
double-underscore (__) prefix for meta fields, since all names with that prefix are explicitly reserved and prohibited
from being used in directives, fields, or any other artifacts.

2.1. Language Specification 11

https://facebook.github.io/graphql/draft/#sec-Reserved-Names
https://facebook.github.io/graphql/draft/#sec-Reserved-Names

GraphQL Compiler

Adding the _x_count meta field to your schema

Since the _x_count meta field is not currently part of the GraphQL standard, it has to be explicitly added to all
interfaces and types in your schema. There are two ways to do this.

The preferred way to do this is to use the EXTENDED_META_FIELD_DEFINITIONS constant as a starting point
for building your interfaces’ and types’ field descriptions:

from graphql import GraphQLInt, GraphQLField, GraphQLObjectType, GraphQLString
from graphql_compiler import EXTENDED_META_FIELD_DEFINITIONS
fields = EXTENDED_META_FIELD_DEFINITIONS.copy()
fields.update({

'foo': GraphQLField(GraphQLString),
'bar': GraphQLField(GraphQLInt),
etc.

})
graphql_type = GraphQLObjectType('MyType', fields)
etc.

If you are not able to programmatically define the schema, and instead simply have a pre-
made GraphQL schema object that you are able to mutate, the alternative approach is via the
insert_meta_fields_into_existing_schema() helper function defined by the compiler:

assuming that existing_schema is your GraphQL schema object
insert_meta_fields_into_existing_schema(existing_schema)
existing_schema was mutated in-place and all custom meta-fields were added

Example Use

{
Animal {

name @output(out_name: "name")
out_Animal_ParentOf @fold {

_x_count @output(out_name: "number_of_children")
name @output(out_name: "child_names")

}
}

}

This query returns one row for each Animal vertex. Each row contains its name, and the number and names
of its children. While the output type of the child_names selection is a list of strings, the output type of the
number_of_children selection is an integer.

{
Animal {

name @output(out_name: "name")
out_Animal_ParentOf @fold {

_x_count @filter(op_name: ">=", value: ["$min_children"])
@output(out_name: "number_of_children")

name @filter(op_name: "has_substring", value: ["$substr"])
@output(out_name: "child_names")

}
}

}

Here, we’ve modified the above query to add two more filtering constraints to the returned rows:

12 Chapter 2. Features

GraphQL Compiler

• child Animal vertices must contain the value of $substr as a substring in their name, and

• Animal vertices must have at least $min_children children that satisfy the above filter.

Importantly, any filtering on _x_count is applied after any other filters and type coercions that are present in the
@fold in question. This order of operations matters a lot: selecting Animal vertices with 3+ children, then filtering
the children based on their names is not the same as filtering the children first, and then selecting Animal vertices
that have 3+ children that matched the earlier filter.

Constraints and Rules

• The _x_count field is only allowed to appear within a vertex field marked @fold.

• Filtering on _x_count is always applied after any other filters and type coercions present in that @fold.

• Filtering or outputting the value of the _x_count field must always be done at the innermost scope of the
@fold. It is invalid to expand vertex fields within a @fold after filtering or outputting the value of the
_x_count meta field.

How is filtering on _x_count different from @filter with has_edge_degree?

The has_edge_degree filter allows filtering based on the number of edges of a particular type. There are situations
in which filtering with has_edge_degree and filtering using = on _x_count produce equivalent queries. Here
is one such pair of queries:

{
Species {

name @output(out_name: "name")
in_Animal_OfSpecies @filter(op_name: "has_edge_degree", value: ["$num_animals

→˓"]) {
uuid

}
}

}

and

{
Species {

name @output(out_name: "name")
in_Animal_OfSpecies @fold {

_x_count @filter(op_name: "=", value: ["$num_animals"])
}

}
}

In both of these queries, we ask for the names of the Species vertices that have precisely $num_animalsmembers.
However, we have expressed this question in two different ways: once as a property of the Species vertex (“the
degree of the in_Animal_OfSpecies is $num_animals”), and once as a property of the list of Animal vertices
produced by the @fold (“the number of elements in the @fold is $num_animals”).

When we add additional filtering within the Animal vertices of the in_Animal_OfSpecies vertex field, this
distinction becomes very important. Compare the following two queries:

2.1. Language Specification 13

GraphQL Compiler

{
Species {

name @output(out_name: "name")
in_Animal_OfSpecies @filter(op_name: "has_edge_degree", value: ["$num_animals

→˓"]) {
out_Animal_LivesIn {

name @filter(op_name: "=", value: ["$location"])
}

}
}

}

versus

{
Species {

name @output(out_name: "name")
in_Animal_OfSpecies @fold {

out_Animal_LivesIn {
_x_count @filter(op_name: "=", value: ["$num_animals"])
name @filter(op_name: "=", value: ["$location"])

}
}

}
}

In the first, for the purposes of the has_edge_degree filtering, the location where the animals live is irrele-
vant: the has_edge_degree only makes sure that the Species vertex has the correct number of edges of type
in_Animal_OfSpecies, and that’s it. In contrast, the second query ensures that only Species vertices that have
$num_animals animals that live in the selected location are returned – the location matters since the @filter on
the _x_count field applies to the number of elements in the @fold scope.

2.1.3 Query Directives

@optional

Without this directive, when a query includes a vertex field, any results matching that query must be able to produce
a value for that vertex field. Applied to a vertex field, this directive prevents result sets that are unable to produce a
value for that field from being discarded, and allowed to continue processing the remainder of the query.

Example Use

{
Animal {

name @output(out_name: "name")
out_Animal_ParentOf @optional {

name @output(out_name: "child_name")
}

}
}

For each Animal:

14 Chapter 2. Features

GraphQL Compiler

• if it is a parent of another animal, at least one row containing the parent and child animal’s names, in the name
and child_name columns respectively;

• if it is not a parent of another animal, a row with its name in the name column, and a null value in the
child_name column.

Constraints and Rules

• @optional can only be applied to vertex fields, except the root vertex field.

• It is allowed to expand vertex fields within an @optional scope. However, doing so is currently associated
with a performance penalty in MATCH.

• @recurse, @fold, or @output_source may not be used at the same vertex field as @optional.

• @output_source and @fold may not be used anywhere within a scope marked @optional.

If a given result set is unable to produce a value for a vertex field marked @optional, any fields marked @output
within that vertex field return the null value.

When filtering (via @filter) or type coercion (via e.g. ... on Animal) are applied at or within a vertex field
marked @optional, the @optional is given precedence:

• If a given result set cannot produce a value for the optional vertex field, it is preserved: the @optional
directive is applied first, and no filtering or type coercion can happen.

• If a given result set is able to produce a value for the optional vertex field, the @optional does not apply, and
that value is then checked against the filtering or type coercion. These subsequent operations may then cause
the result set to be discarded if it does not match.

For example, suppose we have two Person vertices with names Albert and Betty such that there is a
Person_Knows edge from Albert to Betty.

Then the following query:

{
Person {
out_Person_Knows @optional {

name @filter(op_name: "=", value: ["$name"])
}
name @output(out_name: "person_name")

}
}

with runtime parameter

{
"name": "Charles"

}

would output

[
{ name: 'Betty' },

]

because the Person_Knows edge from Albert to Betty satisfies the @optional directive, but Betty doesn’t
match the filter checking for a node with name Charles.

However, if no such Person_Knows edge existed from Albert, then the output would be

2.1. Language Specification 15

GraphQL Compiler

[
{ name: 'Albert' },
{ name: 'Betty' },

]

because no such edge can satisfy the @optional directive, and no filtering happens. In both examples, Betty is
always returned because Betty does not have any outgoing Person_Knows edges.

@output

Denotes that the value of a property field should be included in the output. Its out_name argument specifies the
name of the column in which the output value should be returned.

Example Use

{
Animal {

name @output(out_name: "animal_name")
}

}

This query returns the name of each Animal in the graph, in a column named animal_name.

Constraints and Rules

• @output can only be applied to property fields.

• The value provided for out_name may only consist of upper or lower case letters (A-Z, a-z), or underscores
(_).

• The value provided for out_name cannot be prefixed with ___ (three underscores). This namespace is re-
served for compiler internal use.

• For any given query, all out_name values must be unique. In other words, output columns must have unique
names.

If the property field marked @output exists within a scope marked @optional, result sets that are unable to assign
a value to the optional scope return the value null as the output of that property field.

@fold

Applying @fold on a scope “folds” all outputs from within that scope: rather than appearing on separate rows in the
query result, the folded outputs are coalesced into parallel lists starting at the scope marked @fold.

It is also possible to output or apply filters to the number of results captured in a @fold. The _x_count meta field
that is available within @fold scopes represents the number of elements in the fold, and may be filtered or output as
usual. As _x_count represents a count of elements, marking it @output will produce an integer value. See the
_x_count section for more details.

16 Chapter 2. Features

GraphQL Compiler

Example Use

{
Animal {

name @output(out_name: "animal_name")
out_Entity_Related @fold {

... on Location {
_x_count @output(out_name: "location_count")
name @output(out_name: "location_names")

}
}

}
}

Each returned row has three columns: animal_name with the name of each Animal in the graph,
location_count with the related locations for that Animal, and location_names with a list of the names
of all related locations of the Animal named animal_name. If a given Animal has no related locations, its
location_names list is empty and the location_count value is 0.

Constraints and Rules

• @fold can only be applied to vertex fields, except the root vertex field.

• May not exist at the same vertex field as @recurse, @optional, or @output_source.

• Any scope that is either marked with @fold or is nested within a @fold marked scope, may expand at most
one vertex field.

• “No no-op @fold scopes”: within any @fold scope, there must either be at least one field that is marked
@output, or there must be a @filter applied to the _x_count field.

• All @output fields within a @fold traversal must be present at the innermost scope. It is invalid to expand
vertex fields within a @fold after encountering an @output directive.

• @tag, @recurse, @optional, @output_source and @fold may not be used anywhere within a scope
marked @fold.

• The _x_count meta field may only appear at the innermost scope of a @fold marked scope.

• Marking the _x_count meta field with an @output produces an integer value corresponding to the number
of results within that fold.

• Marking for @output any field other than the _x_count meta field produces a list of results, where the
number of elements in that list is equal to the value of the _x_count meta field, if it were selected for output.

• If multiple fields (other than _x_count) are marked @output, the resulting output lists are parallel: the ith
element of each such list is the value of the corresponding field of the ith element of the @fold, for some
fixed order of elements in that @fold. The order of elements within the output of a @fold is only fixed for a
particular execution of a given query, for the results of a given @fold that are part of a single result set. There
is no guarantee of consistent ordering of elements for the same @fold in any of the following situations:

– across two or more result sets that are both the result of the execution of the same query;

– across different executions of the same query, or

– across different queries that contain the same @fold scope.

• Use of type coercions or @filter at or within the vertex field marked @fold is allowed. The order of
operations is conceptually as follows:

2.1. Language Specification 17

GraphQL Compiler

– First, type coercions and filters (except @filter on the _x_count meta field) are applied, and any data
that does not satisfy such coercions and filters is discarded. At this point, the size of the fold (i.e. its
number of results) is fixed.

– Then, any @filter directives on the _x_count meta field are applied, allowing filtering of result sets
based on the fold size. Any result sets that do not match these filters are discarded.

– Finally, if the result set was not discarded by the previous step, @output directives are processed, select-
ing folded data for output.

• If the compiler is able to prove that a type coercion in the @fold scope is actually a no-op, it may optimize it
away.

Example

The following GraphQL is not allowed and will produce a GraphQLCompilationError. This query is invalid
for two separate reasons:

• It expands vertex fields after an @output directive (outputting animal_name)

• The in_Animal_ParentOf scope, which is within a scope marked @fold, expands two vertex fields instead
of at most one.

{
Animal {

out_Animal_ParentOf @fold {
name @output(out_name: "animal_name")
in_Animal_ParentOf {

out_Animal_OfSpecies {
uuid @output(out_name: "species_id")

}
out_Entity_Related {

... on Animal {
name @output(out_name: "relative_name")

}
}

}
}

}
}

The following GraphQL query is similarly not allowed and will produce a GraphQLCompilationError, since
the _x_count field is not within the innermost scope in the @fold.

{
Animal {

out_Animal_ParentOf @fold {
_x_count @output(out_name: "related_count")
out_Entity_Related {

... on Animal {
name @output(out_name: "related_name")

}
}

}
}

}

Moving the _x_count field to the innermost scope results in the following valid use of @fold:

18 Chapter 2. Features

GraphQL Compiler

{
Animal {

out_Animal_ParentOf @fold {
out_Entity_Related {

... on Animal {
_x_count @output(out_name: "related_count")
name @output(out_name: "related_name")

}
}

}
}

}

Here is an example of query whose @fold does not output any data; it returns the names of all animals that have more
than count children whose names contain the substring substr:

{
Animal {

name @output(out_name: "animal_name")
out_Animal_ParentOf @fold {

_x_count @filter(op_name: ">=", value: ["$count"])
name @filter(op_name: "has_substring", value: ["$substr"])

}
}

}

@tag

The @tag directive enables filtering based on values encountered elsewhere in the same query. Applied on a property
field, it assigns a name to the value of that property field, allowing that value to then be used as part of a @filter
directive.

To supply a tagged value to a @filter directive, place the tag name (prefixed with a % symbol) in the @filter’s
value array. See Passing parameters for more details.

Example Use

{
Animal {

limbs @tag(tag_name: "parent_limbs")
out_Animal_ParentOf {

limbs @filter(op_name: "<", value: ["%parent_limbs"])
name @output(out_name: "child_name")

}
}

}

Each result returned by this query contains the name of an Animal who is a child of another animal and has fewer
limbs than its parent.

Constraints and Rules

• @tag can only be applied to property fields.

2.1. Language Specification 19

GraphQL Compiler

• The value provided for tag_name may only consist of upper or lower case letters (A-Z, a-z), or underscores
(_).

• For any given query, all tag_name values must be unique.

• Cannot be applied to property fields within a scope marked @fold.

• Using a @tag and a @filter that references the tag within the same vertex is allowed, so long as the two do
not appear on the exact same property field.

@filter

Allows filtering of the data to be returned, based on any of a set of filtering operations. Conceptually, it is the GraphQL
equivalent of the SQL WHERE keyword.

See Supported filtering operations for details on the various types of filtering that the compiler currently supports.
These operations are currently hardcoded in the compiler; in the future, we may enable the addition of custom filtering
operations via compiler plugins.

Multiple @filter directives may be applied to the same field at once. Conceptually, it is as if the different @filter
directives were joined by SQL AND keywords.

Using a @tag and a @filter that references the tag within the same vertex is allowed, so long as the two do not
appear on the exact same property field.

Passing Parameters

The @filter directive accepts two types of parameters: runtime parameters and tagged parameters.

Runtime parameters are represented with a $ prefix (e.g. $foo), and denote parameters whose values will be
known at runtime. The compiler will compile the GraphQL query leaving a spot for the value to fill at runtime. After
compilation, the user will have to supply values for all runtime parameters, and their values will be inserted into the
final query before it can be executed against the database.

Consider the following query:

{
Animal {

name @output(out_name: "animal_name")
color @filter(op_name: "=", value: ["$animal_color"])

}
}

It returns one row for every Animal vertex that has a color equal to $animal_color. Each row contains the
animal’s name in a column named animal_name. The parameter $animal_color is a runtime parameter –
the user must pass in a value (e.g. {"animal_color": "blue"}) that will be inserted into the query before
querying the database.

Tagged parameters are represented with a % prefix (e.g. %foo) and denote parameters whose values are derived from
a property field encountered elsewhere in the query. If the user marks a property field with a @tag directive and a
suitable name, that value becomes available to use as a tagged parameter in all subsequent @filter directives.

Consider the following query:

{
Animal {

name @tag(out_name: "parent_name")
out_Animal_ParentOf {

(continues on next page)

20 Chapter 2. Features

GraphQL Compiler

(continued from previous page)

name @filter(op_name: "has_substring", value: ["%parent_name"])
@output(out_name: "child_name")

}
}

}

It returns the names of animals that contain their parent’s name as a substring of their own. The database captures
the value of the parent animal’s name as the parent_name tag, and this value is then used as the %parent_name
tagged parameter in the child animal’s @filter.

We considered and rejected the idea of allowing literal values (e.g. 123) as @filter parameters, for several reasons:

• The GraphQL type of the @filter directive’s value field cannot reasonably encompass all the different types
of arguments that people might supply. Even counting scalar types only, there’s already ID, Int, Float,
Boolean, String, Date, DateTime... – way too many to include.

• Literal values would be used when the parameter’s value is known to be fixed. We can just as easily accom-
plish the same thing by using a runtime parameter with a fixed value. That approach has the added benefit of
potentially reducing the number of different queries that have to be compiled: two queries with different literal
values would have to be compiled twice, whereas using two different sets of runtime arguments only requires
the compilation of one query.

• We were concerned about the potential for accidental misuse of literal values. SQL systems have supported
stored procedures and parameterized queries for decades, and yet ad-hoc SQL query construction via simple
string interpolation is still a serious problem and is the source of many SQL injection vulnerabilities. We felt
that disallowing literal values in the query will drastically reduce both the use and the risks of unsafe string
interpolation, at an acceptable cost.

Constraints and Rules

• The value provided for op_name may only consist of upper or lower case letters (A-Z, a-z), or underscores
(_).

• Values provided in the value list must start with either $ (denoting a runtime parameter) or % (denoting a
tagged parameter), followed by exclusively upper or lower case letters (A-Z, a-z) or underscores (_).

• The @tag directives corresponding to any tagged parameters in a given @filter query must be applied to
fields that appear either at the same vertex as the one with the @filter, or strictly before the field with the
@filter directive.

• “Can’t compare apples and oranges” – the GraphQL type of the parameters supplied to the @filter must
match the GraphQL types the compiler infers based on the field the @filter is applied to.

• If the @tag corresponding to a tagged parameter originates from within a vertex field marked @optional, the
emitted code for the @filter checks if the @optional field was assigned a value. If no value was assigned
to the @optional field, comparisons against the tagged parameter from within that field return True.

– For example, assuming %from_optional originates from an @optional scope, when no value is
assigned to the @optional field:

* using @filter(op_name: "=", value: ["%from_optional"]) is equivalent to not
having the filter at all;

* using @filter(op_name: "between", value: ["$lower",
"%from_optional"]) is equivalent to @filter(op_name: ">=", value:
["$lower"]).

2.1. Language Specification 21

GraphQL Compiler

• Using a @tag and a @filter that references the tag within the same vertex is allowed, so long as the two do
not appear on the exact same property field.

@recurse

Applied to a vertex field, specifies that the edge connecting that vertex field to the current vertex should be visited
repeatedly, up to depth times. The recursion always starts at depth = 0, i.e. the current vertex – see the below
sections for a more thorough explanation.

Example Use

Say the user wants to fetch the names of the children and grandchildren of each Animal. That could be accomplished
by running the following two queries and concatenating their results:

{
Animal {

name @output(out_name: "ancestor")
out_Animal_ParentOf {

name @output(out_name: "descendant")
}

}
}

{
Animal {

name @output(out_name: "ancestor")
out_Animal_ParentOf {

out_Animal_ParentOf {
name @output(out_name: "descendant")

}
}

}
}

If the user then wanted to also add great-grandchildren to the descendants output, that would require yet another
query, and so on. Instead of concatenating the results of multiple queries, the user can simply use the @recurse
directive. The following query returns the child and grandchild descendants:

{
Animal {

name @output(out_name: "ancestor")
out_Animal_ParentOf {

out_Animal_ParentOf @recurse(depth: 1) {
name @output(out_name: "descendant")

}
}

}
}

Each row returned by this query contains the name of an Animal in the ancestor column and the name of its
child or grandchild in the descendant column. The out_Animal_ParentOf vertex field marked @recurse
is already enclosed within another out_Animal_ParentOf vertex field, so the recursion starts at the “child” level
(the out_Animal_ParentOf not marked with @recurse). Therefore, the descendant column contains the
names of an ancestor’s children (from depth = 0 of the recursion) and the names of its grandchildren (from
depth = 1).

22 Chapter 2. Features

GraphQL Compiler

Recursion using this directive is possible since the types of the enclosing scope and the recursion scope work out: the
@recurse directive is applied to a vertex field of type Animal and its vertex field is enclosed within a scope of type
Animal. Additional cases where recursion is allowed are described in detail below.

The descendant column cannot have the name of the ancestor animal since the @recurse is already within
one out_Animal_ParentOf and not at the root Animal vertex field. Similarly, it cannot have descendants that
are more than two steps removed (e.g., great-grandchildren), since the depth parameter of @recurse is set to 1.

Now, let’s see what happens when we eliminate the outer out_Animal_ParentOf vertex field and simply have
the @recurse applied on the out_Animal_ParentOf in the root vertex field scope:

{
Animal {

name @output(out_name: "ancestor")
out_Animal_ParentOf @recurse(depth: 1) {

name @output(out_name: "self_or_descendant")
}

}
}

In this case, when the recursion starts at depth = 0, the Animal within the recursion scope will be the
same Animal at the root vertex field, and therefore, in the depth = 0 step of the recursion, the value of the
self_or_descendant field will be equal to the value of the ancestor field.

Constraints and Rules

• “The types must work out” – when applied within a scope of type A, to a vertex field of type B, at least one of
the following must be true:

– A is a GraphQL union;

– B is a GraphQL interface, and A is a type that implements that interface;

– A and B are the same type.

• @recurse can only be applied to vertex fields other than the root vertex field of a query.

• Cannot be used within a scope marked @optional or @fold.

• The depth parameter of the recursion must always have a value greater than or equal to 1. Using depth =
1 produces the current vertex and its neighboring vertices along the specified edge.

• Type coercions and @filter directives within a scope marked @recurse do not limit the recursion depth.
Conceptually, recursion to the specified depth happens first, and then type coercions and @filter directives
eliminate some of the locations reached by the recursion.

• As demonstrated by the examples above, the recursion always starts at depth 0, so the recursion scope always
includes the vertex at the scope that encloses the vertex field marked @recurse.

@output_source

@output_source is a directive that can be used on the last vertex field in a query to reverse the order in which
vertex fields are visited. Currently, its primary function is to help deal with the following known issue that occurs
when compiling to gremlin. When vertex fields are visited in a certain order in a GraphQL query, the compiler
returns a gremlin that does not return the complete set of results promised by the query semantics. See the example
use section for more details.

2.1. Language Specification 23

GraphQL Compiler

Example use

a ---->_ x
|____ /|

|/
/ |____
/ \/

b ----> y

Let a, b, x, y be the values of the name property field of four vertices. Let the vertices named a and b be of type
S, and let x and y be of type T. Let vertex a be connected to both x and y via directed edges of type E. Similarly, let
vertex b also be connected to both x and y via directed edges of type E.

Consider the GraphQL query:

{
S {

name @output(out_name: "s_name")
out_E {

name @output(out_name: "t_name")
}

}
}

Between the data in the database and the query’s structure, it is clear that combining any of a or b with any of x or y
would produce a valid result. Therefore, the complete result list, shown here in JSON format, would be:

[
{"s_name": "a", "t_name": "x"},
{"s_name": "a", "t_name": "y"},
{"s_name": "b", "t_name": "x"},
{"s_name": "b", "t_name": "y"},

]

This is precisely what the MATCH compilation target is guaranteed to produce. (MATCH is our name for the SQL dialect
that OrientDB uses). However, the gremlin compilation target does not guarantee a complete result list. Querying
the database using a query string generated by the gremlin compilation target will produce only a partial result list
resembling the following:

[
{"s_name": "a", "t_name": "x"},
{"s_name": "b", "t_name": "x"},

]

Due to limitations in the underlying query language, gremlin will by default produce at most one result for each of
the starting locations in the query. The above GraphQL query started at the type S, so each s_name in the returned
result list is therefore distinct. Furthermore, there is no guarantee (and no way to know ahead of time) whether x or y
will be returned as the t_name value in each result, as they are both valid results.

Users may apply the @output_source directive on the last scope of the query to alter this behavior:

{
S {

name @output(out_name: "s_name")
out_E @output_source {

name @output(out_name: "t_name")
}

(continues on next page)

24 Chapter 2. Features

GraphQL Compiler

(continued from previous page)

}
}

Rather than producing at most one result for each S, the query will now produce at most one result for each distinct
value that can be found at out_E, where the directive is applied:

[
{"s_name": "a", "t_name": "x"},
{"s_name": "a", "t_name": "y"},

]

Conceptually, applying the @output_source directive makes it as if the query were written in the opposite order:

{
T {

name @output(out_name: "t_name")
in_E {

name @output(out_name: "s_name")
}

}
}

Constraints and Rules

• May exist at most once in any given GraphQL query.

• Can exist only on a vertex field, and only on the last vertex field used in the query.

• Cannot be used within a scope marked @optional or @fold.

Supported filtering operations

Comparison operators

Supported comparison operators:

• Equal to: =

• Not equal to: !=

• Greater than: >

• Less than: <

• Greater than or equal to: >=

• Less than or equal to: <=

Example Use

Equal to (=):

2.1. Language Specification 25

GraphQL Compiler

{
Species {

name @filter(op_name: "=", value: ["$species_name"])
uuid @output(out_name: "species_uuid")

}
}

This returns one row for every Species whose name is equal to the value of the $species_name parameter. Each
row contains the uuid of the Species in a column named species_uuid.

Greater than or equal to (>=):

{
Animal {

name @output(out_name: "name")
birthday @output(out_name: "birthday")

@filter(op_name: ">=", value: ["$point_in_time"])
}

}

This returns one row for every Animal vertex that was born after or on a $point_in_time. Each row contains
the animal’s name and birthday in columns named name and birthday, respectively.

Constraints and Rules

• All comparison operators must be on a property field.

name_or_alias

Allows you to filter on vertices which contain the exact string $wanted_name_or_alias in their name or alias
fields.

Example Use

{
Animal @filter(op_name: "name_or_alias", value: ["$wanted_name_or_alias"]) {

name @output(out_name: "name")
}

}

This returns one row for every Animal vertex whose name and/or alias is equal to $wanted_name_or_alias.
Each row contains the animal’s name in a column named name.

The value provided for $wanted_name_or_alias must be the full name and/or alias of the Animal. Substrings
will not be matched.

Constraints and Rules

• Must be on a vertex field that has name and alias properties.

26 Chapter 2. Features

GraphQL Compiler

between

Example Use

{
Animal {

name @output(out_name: "name")
birthday @filter(op_name: "between", value: ["$lower", "$upper"])

@output(out_name: "birthday")
}

}

This returns:

• One row for every Animal vertex whose birthday is in between $lower and $upper dates (inclusive). Each
row contains the animal’s name in a column named name.

Constraints and Rules

• Must be on a property field.

• The lower and upper bounds represent an inclusive interval, which means that the output may contain values
that match them exactly.

in_collection

Example Use

{
Animal {

name @output(out_name: "animal_name")
color @output(out_name: "color")

@filter(op_name: "in_collection", value: ["$colors"])
}

}

This returns one row for every Animal vertex which has a color contained in a list of colors. Each row contains the
Animal’s name and color in columns named animal_name and color, respectively.

Constraints and Rules

• Must be on a property field that is not of list type.

not_in_collection

Example Use

2.1. Language Specification 27

GraphQL Compiler

{
Animal {

name @output(out_name: "animal_name")
color @output(out_name: "color")

@filter(op_name: "not_in_collection", value: ["$colors"])
}

}

This returns one row for every Animal vertex which has a color not contained in a list of colors. Each row contains
the Animal’s name and color in columns named animal_name and color, respectively.

Constraints and Rules

• Must be on a property field that is not of list type.

has_substring

Example Use

{
Animal {

name @filter(op_name: "has_substring", value: ["$substring"])
@output(out_name: "animal_name")

}
}

This returns one row for every Animal vertex whose name contains the value supplied for the $substring param-
eter. Each row contains the matching Animal’s name in a column named animal_name.

Constraints and Rules

• Must be on a property field of string type.

starts_with

Example Use

{
Animal {

name @filter(op_name: "starts_with", value: ["$prefix"])
@output(out_name: "animal_name")

}
}

This returns one row for every Animal vertex whose name starts with the value supplied for the $prefix parameter.
Each row contains the matching Animal’s name in a column named animal_name.

28 Chapter 2. Features

GraphQL Compiler

Constraints and Rules

• Must be on a property field of string type.

ends_with

Example Use

{
Animal {

name @filter(op_name: "ends_with", value: ["$suffix"])
@output(out_name: "animal_name")

}
}

This returns one row for every Animal vertex whose name ends with the value supplied for the $suffix parameter.
Each row contains the matching Animal’s name in a column named animal_name.

Constraints and Rules

• Must be on a property field of string type.

contains

Example Use

{
Animal {

alias @filter(op_name: "contains", value: ["$wanted"])
name @output(out_name: "animal_name")

}
}

This returns one row for every Animal vertex whose list of aliases contains the value supplied for the $wanted
parameter. Each row contains the matching Animal’s name in a column named animal_name.

Constraints and Rules

• Must be on a property field of list type.

not_contains

Example Use

{
Animal {

alias @filter(op_name: "not_contains", value: ["$wanted"])

(continues on next page)

2.1. Language Specification 29

GraphQL Compiler

(continued from previous page)

name @output(out_name: "animal_name")
}

}

This returns one row for every Animal vertex whose list of aliases does not contain the value supplied for the
$wanted parameter. Each row contains the matching Animal’s name in a column named animal_name.

Constraints and Rules

• Must be on a property field of list type.

intersects

Example Use

{
Animal {

alias @filter(op_name: "intersects", value: ["$wanted"])
name @output(out_name: "animal_name")

}
}

This returns one row for every Animal vertex whose list of aliases has a non-empty intersection with the list of
values supplied for the $wanted parameter. Each row contains the matching Animal’s name in a column named
animal_name.

Constraints and Rules

• Must be on a property field of list type.

has_edge_degree

Example Use

{
Animal {

name @output(out_name: "animal_name")
out_Animal_ParentOf @filter(op_name: "has_edge_degree", value: ["$child_count

→˓"]) @optional {
uuid

}
}

}

This returns one row for every Animal vertex that has exactly $child_count children (i.e. where the
out_Animal_ParentOf edge appears exactly $child_count times). Each row contains the matching
Animal’s name, in a column named animal_name.

30 Chapter 2. Features

GraphQL Compiler

The uuid field within the out_Animal_ParentOf vertex field is added simply to satisfy the GraphQL syntax
rule that requires at least one field to exist within any {}. Since this field is not marked with any directive, it has no
effect on the query.

N.B.: Please note the @optional directive on the vertex field being filtered above. If in your use case you expect
to set $child_count to 0, you must also mark that vertex field @optional. Recall that absence of @optional
implies that at least one such edge must exist. If the has_edge_degree filter is used with a parameter set to 0, that
requires the edge to not exist. Therefore, if the @optional is not present in this situation, no valid result sets can be
produced, and the resulting query will return no results.

Constraints and Rules

• Must be on a vertex field that is not the root vertex of the query.

• Tagged values are not supported as parameters for this filter.

• If the runtime parameter for this operator can be 0, it is strongly recommended to also apply @optional to
the vertex field being filtered (see N.B. above for details).

is_null

Example Use

{
Animal {

name @output(out_name: "animal_name")
color @filter(op_name: "is_null")

}
}

This returns one row for every Animal that does not have a color defined.

Constraints and Rules

• Must be applied on a property field.

• value must either not appear in the filter (shown in the example) or be an empty list.

is_not_null

Example Use

{
Animal {

name @output(out_name: "animal_name")
color @filter(op_name: "is_not_null")

}
}

This returns one row for every Animal that has a color defined.

2.1. Language Specification 31

GraphQL Compiler

Constraints and Rules

• Must be applied on a property field.

• value must either not appear in the filter (shown in the example) or be an empty list.

2.2 Supported Databases

Refer to this section to learn how the compiler integrates with the target database. The database home pages include
an end-to-end example, instruction for schema info generation, and any limitations or intricacies related to working
with said database. We currently support two types of database backends:

• OrientDB

• SQL Databases, including SQL Server, Postgres and more.

• Neo4j/Redisgraph

2.2.1 OrientDB

The best way to integrate the compiler with OrientDB is by compiling to MATCH, our name for the SQL dialect that
OrientDB uses. All query directives are supported when compiling to MATCH. Additionally, since OrientDB is a
graph database, generating a GraphQL schema from an OrientDB database requires minimal configuration.

Important: We currently support OrientDB version 2.2.28+.

End-to-End Example

See Getting Started for an end-to-end OrientDB example.

Performance Penalties

Compound optional Performance Penalty

When compiling to MATCH, including an optional statement in GraphQL has no performance issues on its own, but
if you continue expanding vertex fields within an optional scope, there may be significant performance implications.

Going forward, we will refer to two different kinds of @optional directives.

• A “simple” optional is a vertex with an @optional directive that does not expand any vertex fields within it.
For example:

{
Animal {

name @output(out_name: "name")
in_Animal_ParentOf @optional {

name @output(out_name: "parent_name")
}

}
}

32 Chapter 2. Features

GraphQL Compiler

OrientDB MATCH currently allows the last step in any traversal to be optional. Therefore, the equivalent MATCH
traversal for the above GraphQL is as follows:

SELECT
Animal___1.name as `name`,
Animal__in_Animal_ParentOf___1.name as `parent_name`
FROM (
MATCH {

class: Animal,
as: Animal___1

}.in('Animal_ParentOf') {
as: Animal__in_Animal_ParentOf___1

}
RETURN $matches
)

• A “compound” optional is a vertex with an @optional directive which does expand vertex fields within it.
For example:

{
Animal {

name @output(out_name: "name")
in_Animal_ParentOf @optional {

name @output(out_name: "parent_name")
in_Animal_ParentOf {

name @output(out_name: "grandparent_name")
}

}
}

}

Currently, this cannot represented by a simple MATCH query. Specifically, the following is NOT a valid MATCH
statement, because the optional traversal follows another edge:

-- NOT A VALID QUERY
SELECT
Animal___1.name as `name`,
Animal__in_Animal_ParentOf___1.name as `parent_name`
FROM (
MATCH {

class: Animal,
as: Animal___1

}.in('Animal_ParentOf') {
optional: true,
as: Animal__in_Animal_ParentOf___1

}.in('Animal_ParentOf') {
as: Animal__in_Animal_ParentOf__in_Animal_ParentOf___1

}
RETURN $matches
)

Instead, we represent a compound optional by taking an union (UNIONALL) of two distinct MATCH queries. For
instance, the GraphQL query above can be represented as follows:

SELECT EXPAND($final_match)
LET

$match1 = (
SELECT

(continues on next page)

2.2. Supported Databases 33

GraphQL Compiler

(continued from previous page)

Animal___1.name AS `name`
FROM (

MATCH {
class: Animal,
as: Animal___1,
where: (

(in_Animal_ParentOf IS null)
OR
(in_Animal_ParentOf.size() = 0)

),
}

)
),
$match2 = (

SELECT
Animal___1.name AS `name`,
Animal__in_Animal_ParentOf___1.name AS `parent_name`

FROM (
MATCH {

class: Animal,
as: Animal___1

}.in('Animal_ParentOf') {
as: Animal__in_Animal_ParentOf___1

}.in('Animal_ParentOf') {
as: Animal__in_Animal_ParentOf__in_Animal_ParentOf___1

}
)

),
$final_match = UNIONALL($match1, $match2)

In the first case where the optional edge is not followed, we have to explicitly filter out all vertices where the edge
could have been followed. This is to eliminate duplicates between the two MATCH selections.

Note: The previous example is not exactly how we implement compound optionals (we also have SELECT statements
within $match1 and $match2), but it illustrates the the general idea.

Performance Analysis

If we have many compound optionals in the given GraphQL, the above procedure results in the union of a large
number of MATCH queries. Specifically, for n compound optionals, we generate 2n different MATCH queries. For each
of the 2n subsets S of the n optional edges:

• We remove the @optional restriction for each traversal in S.

• For each traverse t in the complement of S, we entirely discard t along with all the vertices and directives
within it, and we add a filter on the previous traverse to ensure that the edge corresponding to t does not exist.

Therefore, we get a performance penalty that grows exponentially with the number of compound optional edges. This
is important to keep in mind when writing queries with many optional directives.

If some of those compound optionals contain @optional vertex fields of their own, the performance penalty grows
since we have to account for all possible subsets of @optional statements that can be satisfied simultaneously.

34 Chapter 2. Features

GraphQL Compiler

2.2.2 SQL

Relational databases are supported by compiling to SQLAlchemy core as an intermediate language, and then relying
on SQLAlchemy’s compilation of the dialect-specific SQL query. The compiler does not return a string for SQL
compilation, but instead a SQLAlchemy Query object that can be executed through a SQLAlchemy engine.

Our SQL backend supports basic traversals, filters, tags and outputs, but there are still some pieces in development:

• Directives: @fold

• Filter operators: has_edge_degree

• Dialect-specific features, like Postgres array types, and use of filter operators specific to them: contains,
intersects, name_or_alias

• Meta fields: __typename, _x_count

End-to-End SQL Example

To query a SQL backend simply reflect the needed schema data from the database using SQLAlchemy, compile the
GraphQL query to a SQLAlchemy Query, and execute the query against the engine as in the example below:

from graphql_compiler import get_sqlalchemy_schema_info, graphql_to_sql
from sqlalchemy import MetaData, create_engine

engine = create_engine('<connection string>')

Reflect the default database schema. Each table must have a primary key.
See "Including tables without explicitly enforced primary keys" otherwise.
metadata = MetaData(bind=engine)
metadata.reflect()

Wrap the schema information into a SQLAlchemySchemaInfo object.
sql_schema_info = get_sqlalchemy_schema_info(metadata.tables, {}, engine.dialect)

Write GraphQL query.
graphql_query = '''
{

Animal {
name @output(out_name: "animal_name")

}
}
'''
parameters = {}

Compile and execute query.
compilation_result = graphql_to_sql(sql_schema_info, graphql_query, parameters)
query_results = [dict(row) for row in engine.execute(compilation_result.query)]

Advanced Features

SQL Edges

Edges can be specified in SQL through the direct_edges parameter as illustrated below. SQL edges gets rendered
as out_edgeName and in_edgeName in the source and destination GraphQL objects respectively and edge traver-
sals get compiled to SQL joins between the source and destination tables using the specified columns. We use the term

2.2. Supported Databases 35

https://docs.sqlalchemy.org/en/latest/core/engines.html

GraphQL Compiler

direct_edges below since the compiler may support other types of SQL edges in the future such as edges that are
backed by SQL association tables.

from graphql_compiler import get_sqlalchemy_schema_info, graphql_to_sql
from graphql_compiler.schema_generation.sqlalchemy.edge_descriptors import
→˓DirectEdgeDescriptor
from sqlalchemy import MetaData, create_engine

Set engine and reflect database metadata. (See example above for more details).
engine = create_engine('<connection string>')
metadata = MetaData(bind=engine)
metadata.reflect()

Specify SQL edges.
direct_edges = {

'Animal_LivesIn': DirectEdgeDescriptor(
from_vertex='Animal', # Name of the source GraphQL object as specified.
from_column='location', # Name of the column of the underlying source table

→˓to join on.
to_vertex='Location', # Name of the destination GraphQL object as specified.
to_column='uuid', # Name of the column of the underlying destination table

→˓to join on.
)

}

Wrap the schema information into a SQLAlchemySchemaInfo object.
sql_schema_info = get_sqlalchemy_schema_info(metadata.tables, direct_edges, engine.
→˓dialect)

Write GraphQL query with edge traversal.
graphql_query = '''
{

Animal {
name @output(out_name: "animal_name")
out_Animal_LivesIn {

name @output(out_name: "location_name")
}

}
}
'''

Compile query. Note that the edge traversal gets compiled to a SQL join.
compilation_result = graphql_to_sql(sql_schema_info, graphql_query, {})

Including tables without explicitly enforced primary keys

The compiler requires that each SQLAlchemy Table object in the SQLALchemySchemaInfo has a primary key.
However, the primary key in the Table need not be the primary key in the underlying table. It may simply be a
non-null and unique identifier of each row. To override the primary key of SQLAlchemy Table objects reflected
from a database please follow the instructions in this link.

Including tables from multiple schemas

SQLAlchemy and SQL database management systems support the concept of multiple schemas. One can include
Table objects from multiple schemas in the same SQLAlchemySchemaInfo. However, when doing so, one

36 Chapter 2. Features

https://en.wikipedia.org/wiki/Associative_entity
https://docs.sqlalchemy.org/en/13/core/reflection.html#overriding-reflected-columns
https://docs.sqlalchemy.org/en/13/core/metadata.html?highlight=schema#specifying-the-schema-name

GraphQL Compiler

cannot simply use table names as GraphQL object names because two tables in different schemas can have the same
the name. A solution that is not quite guaranteed to work, but will likely work in practice is to prepend the schema
name as follows:

vertex_name_to_table = {}
for table in metadata.values():

The schema field may be None if the database name is specified in the
→˓connection string

and the table is in the default schema, (e.g. 'dbo' for mssql and 'public' for
→˓postgres).

if table.schema:
vertex_name = 'dbo' + table.name

else:
If the database name is not specified in the connection string, then
the schema field is of the form <databaseName>.<schemaName>.
Since dots are not allowed in GraphQL type names we must remove them here.
vertex_name = table.schema.replace('.', '') + table.name

if vertex_name in vertex_name_to_table:
raise AssertionError('Found two tables with conflicting GraphQL object names.

→˓')

vertex_name_to_table[vertex_name] = table

Including manually defined Table objects

The Table objects in the SQLAlchemySchemaInfo do not need to be reflected from the database. They
also can be manually specified as in this link. However, if specifying Table objects manually, please make
sure to include a primary key for each table and to use only SQL types allowed for the dialect specified in the
SQLAlchemySchemaInfo.

2.2.3 Neo4j/Redisgraph

Cypher query parameters

RedisGraph doesn’t support query parameters, so we perform manual parameter interpolation in the
graphql_to_redisgraph_cypher function. However, for Neo4j, we can use Neo4j’s client to do parame-
ter interpolation on its own so that we don’t reinvent the wheel.

The function insert_arguments_into_query does so based on the query language, which isn’t fine-grained
enough here– for Cypher backends, we only want to insert parameters if the backend is RedisGraph, but not if it’s
Neo4j.

Instead, the correct approach for Neo4j Cypher is as follows, given a Neo4j Python client called neo4j_client:

common_schema_info = CommonSchemaInfo(schema, type_equivalence_hints)
compilation_result = compile_graphql_to_cypher(common_schema_info, graphql_query)
with neo4j_client.driver.session() as session:

result = session.run(compilation_result.query, parameters)

2.3 Advanced Features

To learn more about the advanced features in the GraphQL compiler see:

2.3. Advanced Features 37

https://docs.sqlalchemy.org/en/13/core/metadata.html#creating-and-dropping-database-tables
https://github.com/RedisGraph/RedisGraph/issues/544#issuecomment-507963576

GraphQL Compiler

• Macro System to learn how to write “macro edges”, which allow users to define new edges that become part of
the GraphQL schema, using existing edges as building blocks.

• Schema Graph for an utility that makes it easy to explore the schema of a database, including the databases
indexes.

• Additional Tools for a list of additional tools included in the package, including a query pretty printer.

2.3.1 Macro System

The macro system allows users to reshape how they perceive their data, without requiring changes to the underlying
database structures themselves.

In many real-life situations, the database schema does not fit the user’s mental model of the data. There are many
causes of this, the most common one being database normalization. The representation of the data that is convenient
for storage within a database is rarely the representation that makes for easy querying. As a result, users’ queries
frequently include complex and repetitive query structures that work around the database’s chosen data model.

The compiler’s macro system empowers users reshaping their data’s structure to fit their mental model, minimizing
query complexity and repetitiveness without requiring changes to the shape of the data in the underlying data systems.
The compiler achieves this by allowing users to define macros – type-safe rules for programmatic query rewriting that
transform user-provided queries on the desired data model into queries on the actual data model in the underlying data
systems.

When macros are defined, the compiler loads them into a macro registry – a data structure that tracks all currently
available macros, the resulting GraphQL schema (accounting for macros), and any additional metadata needed by
the compiler. The compiler then leverages this registry to expand queries that rely on macros, rewriting them into
equivalent queries that do not contain any macros and therefore reflect the actual underlying data model.

This makes macros somewhat similar to SQL’s idea of non-materialized views, though there are some key differences:

• SQL views require database access and special permissions; databases are completely oblivious to the use of
macros since by the time the database gets the query, all macro uses have been already expanded.

• Macros can be stored and expanded client-side, so different users that query the same system may define their
own personal macros which are not shared with other users or the server that executes the users’ GraphQL
queries. This is generally not achievable with SQL.

• Since macro expansion does not interact in any way with the underlying data system, it works seamlessly with
all databases and even on schemas stitched together from multiple databases. In contrast, not all databases
support SQL-like VIEW functionality.

Currently, the compiler supports one type of macro: macro edges, which allow the creation of “virtual” edges computed
from existing ones. More types of macros are coming in the future.

Macro registry

The macro registry is where the definitions of all currently defined macros are stored, together with the resulting
GraphQL schema they form, as well as any associated metadata that the compiler’s macro system may need in order
to expand any macros encountered in a query.

To create a macro registry object for a given GraphQL schema, use the create_macro_registry function:

from graphql_compiler.macros import create_macro_registry

macro_registry = create_macro_registry(your_graphql_schema_object)

38 Chapter 2. Features

GraphQL Compiler

To retrieve the GraphQL schema object with all its macro-based additions, use the get_schema_with_macros
function:

from graphql_compiler.macros import get_schema_with_macros

graphql_schema = get_schema_with_macros(macro_registry)

Schema for defining macros

Macro definitions rely on additional directives that are not normally defined in the schema the GraphQL compiler uses
for querying. We intentionally do not include these directives in the schema used for querying, since defining macros
and writing queries are different modes of use of the compiler, and we believe that controlling which sets of directives
are available in which mode will minimize the potential for user confusion.

The get_schema_for_macro_definition() function is able to transform a querying schema into one that is
suitable for defining macros. Getting such a schema may be useful, for example, when setting up a GraphQL editor
(such as GraphiQL) to create and edit macros.

Macro edges

Macro edges allow users to define new edges that become part of the GraphQL schema, using existing edges as
building blocks. They allow users to define shorthand for common querying operations, encapsulating uses of existing
query functionality (e.g., tags, filters, recursion, type coercions, etc.) into a virtual edge with a user-specified name
that exists only on a specific GraphQL type (and all its subtypes). Both macro edge definitions and their uses are fully
type-checked, ensuring the soundness of both the macro definition and any queries that use it.

Overview and use of macro edges

Let us explain the idea of macro edges through a simple example.

Consider the following query, which returns the list of grandchildren of a given animal:

{
Animal {

name @filter(op_name: "=", value: ["$animal_name"])
out_Animal_ParentOf {

out_Animal_ParentOf {
name @output(out_name: "grandchild_name")

}
}

}
}

If operations on animals’ grandchildren are common in our use case, we may wish that an edge like
out_Animal_GrandparentOf had existed and saved us some repetitive typing.

One of our options is to materialize such an edge in the underlying database itself. However, this causes denormaliza-
tion of the database – there are now two places where an animal’s grandchildren are written down – requiring additional
storage space, and introducing potential for user confusion and data inconsistency between the two representations.

Another option is to introduce a non-materialized view within the database that makes it appear that such an edge
exists, and query this view via the GraphQL compiler. While this avoids some of the drawbacks of the previous
approach, not all databases support non-materialized views. Also, querying users are not always able to add views to
the database, and may require additional permissions on the database system.

2.3. Advanced Features 39

GraphQL Compiler

Macro edges give us the opportunity to define a new out_Animal_GrandparentOf edge without involv-
ing the underlying database systems at all. We simply state that such an edge is constructed by composing two
out_Animal_ParentOf edges together:

from graphql_compiler.macros import register_macro_edge

macro_edge_definition = '''{
Animal @macro_edge_definition(name: "out_Animal_GrandparentOf") {

out_Animal_ParentOf {
out_Animal_ParentOf @macro_edge_target {

uuid
}

}
}

}'''
macro_edge_args = {}

register_macro_edge(your_macro_registry_object, macro_edge_definition, macro_edge_
→˓args)

Let’s dig into the GraphQL macro edge definition one step at a time:

• We know that the new macro edge is being defined on the Animal GraphQL type, since that is the type where
the definition begins.

• The @macro_edge_definition directive specifies the name of the new macro edge.

• The newly-defined out_Animal_GrandparentOf edge connects Animal vertices to the ver-
tices reachable after exactly two traversals along out_Animal_ParentOf edges; this is what the
@macro_edge_target directive signifies.

• As the out_Animal_ParentOf field containing the @macro_edge_target directive is of type
[Animal] (we know this from our schema), the compiler will automatically infer that the
out_Animal_GrandparentOf macro edge also points to vertices of type Animal.

• The uuid within the inner out_Animal_ParentOf scope is a “pro-forma” field – it is there simply to
satisfy the GraphQL parser, since per the GraphQL specification, each pair of curly braces must reference at
least one field. The named field has no meaning in this definition, and the user may choose to use any field that
exists within that pair of curly braces. The preferred convention for pro-forma fields is to use whichever field
represents the primary key of the given type in the underlying database.

• This macro edge does not take arguments, so we set the macro_edge_args value to an empty dictionary.
We will cover macro edges with arguments later.

Having defined this macro edge, we are now able to rewrite our original query into a simpler yet equivalent form:

{
Animal {

name @filter(op_name: "=", value: ["$animal_name"])
out_Animal_GrandparentOf {

name @output(out_name: "grandchild_name")
}

}
}

We can now observe the process of macro expansion in action:

from graphql_compiler.macros import get_schema_with_macros, perform_macro_expansion

(continues on next page)

40 Chapter 2. Features

GraphQL Compiler

(continued from previous page)

query = '''{
Animal {

name @filter(op_name: "=", value: ["$animal_name"])
out_Animal_GrandparentOf {

name @output(out_name: "grandchild_name")
}

}
}'''
args = {

'animal_name': 'Hedwig',
}

schema_with_macros = get_schema_with_macros(macro_registry)
new_query, new_args = perform_macro_expansion(macro_registry, schema_with_macros,
→˓query, args)

print(new_query)
Prints out the following query:
{
Animal {
name @filter(op_name: "=", value: ["$animal_name"])
out_Animal_ParentOf {
out_Animal_ParentOf {
name @output(out_name: "grandchild_name")
}
}
}
}

print(new_args)
Prints out the following arguments:
{'animal_name': 'Hedwig'}

Advanced macro edges use cases

When defining macro edges, one may freely use other compiler query functionality, such as @recurse, @filter,
@tag, and so on. Here is a more complex macro edge definition that relies on such more advanced features to define
an edge that connects Animal vertices to their siblings who are both older and have a higher net worth:

from graphql_compiler.macros import register_macro_edge

macro_edge_definition = '''
{

Animal @macro_edge_definition(name: "out_Animal_RicherOlderSiblings") {
net_worth @tag(tag_name: "self_net_worth")
out_Animal_BornAt {

event_date @tag(tag_name: "self_birthday")
}
in_Animal_ParentOf {

out_Animal_ParentOf @macro_edge_target {
net_worth @filter(op_name: ">", value: ["%self_net_worth"])
out_Animal_BornAt {

event_date @filter(op_name: "<", value: ["%self_birthday"])
}

}
(continues on next page)

2.3. Advanced Features 41

GraphQL Compiler

(continued from previous page)

}
}

}'''
macro_edge_args = {}

register_macro_edge(your_macro_registry_object, macro_edge_definition, macro_edge_
→˓args)

Similarly, macro edge definitions are also able to use runtime parameters in their @filter directives, by simply in-
cluding the runtime parameters needed by the macro edge in the call to register_macro_edge(). The following
example defines a macro edge connecting Animal vertices to their grandchildren that go by the name of “Nate”.

macro_edge_definition = '''
{

Animal @macro_edge_definition(name: "out_Animal_GrandchildrenCalledNate") {
out_Animal_ParentOf {

out_Animal_ParentOf @filter(op_name: "name_or_alias", value: ["$nate_name
→˓"])

@macro_edge_target {
uuid

}
}

}
}'''
macro_edge_args = {

'nate_name': 'Nate',
}

register_macro_edge(your_macro_registry_object, macro_edge_definition, macro_edge_
→˓args)

When a GraphQL query uses this macro edge, the perform_macro_expansion() function will automatically
ensure that the macro edge’s arguments become part of the expanded query’s arguments:

query = '''{
Animal {

name @output(out_name: "animal_name")
out_Animal_GrandchildrenCalledNate {

uuid @output(out_name: "grandchild_id")
}

}
}'''
args = {}
schema_with_macros = get_schema_with_macros(macro_registry)
expanded_query, new_args = perform_macro_expansion(

macro_registry, schema_with_macros, query, args)

print(expanded_query)
Prints out the following query:
{
Animal {
name @output(out_name: "animal_name")
out_Animal_ParentOf {
out_Animal_ParentOf @filter(op_name: "name_or_alias", value: ["$nate_
→˓name"]) {
uuid @output(out_name: "grandchild_id")

(continues on next page)

42 Chapter 2. Features

GraphQL Compiler

(continued from previous page)

}
}
}
}

print(new_args)
Prints out the following arguments:
{'nate_name': 'Nate'}

Constraints and rules for macro edge definitions

• Macro edge definitions cannot use other macros as part of their definition.

• A macro definition contains exactly one @macro_edge_definition and one @macro_edge_target
directive. These directives can only be used within macro edge definitions.

• The @macro_edge_target cannot be at or within a scope marked @fold or @optional.

• The scope marked @macro_edge_target cannot immediately contain a type coercion. Instead, place the
@macro_edge_target directive at the type coercion itself instead of on its enclosing scope.

• Macros edge definitions cannot contain uses of @output or @output_source.

Constraints and rules for macro edge usage

• The @optional and @recurse directives cannot be used on macro edges.

• During the process of macro edge expansion, any directives applied on the vertex field belonging to the macro
edge are applied to the vertex field marked with @macro_edge_target in the macro edge’s definition.

In the future, we hope to add support for using @optional on macro edges. We have opened a GitHub issue to track
this effort, and we welcome contributions!

2.3.2 Schema Graph

When building a GraphQL schema from the database metadata, we first build a SchemaGraph from the metadata
and then, from the SchemaGraph, build the GraphQL schema. The SchemaGraph is also a representation of the
underlying database schema, but it has three main advantages that make it a more powerful schema introspection tool:

1. It’s able to store and expose a schema’s index information. The interface for accessing index information is
provisional though and might change in the near future.

2. Its classes are allowed to inherit from non-abstract classes.

3. It exposes many utility functions, such as get_subclass_set, that make it easier to explore the schema.

See below for a mock example of how to build and use the SchemaGraph:

from graphql_compiler.schema_generation.orientdb.schema_graph_builder import (
get_orientdb_schema_graph

)
from graphql_compiler.schema_generation.orientdb.utils import (

ORIENTDB_INDEX_RECORDS_QUERY, ORIENTDB_SCHEMA_RECORDS_QUERY
)

(continues on next page)

2.3. Advanced Features 43

https://github.com/kensho-technologies/graphql-compiler/issues/586

GraphQL Compiler

(continued from previous page)

Get schema metadata from hypothetical Animals database.
client = your_function_that_returns_a_pyorient_client()
schema_records = client.command(ORIENTDB_SCHEMA_RECORDS_QUERY)
schema_data = [record.oRecordData for record in schema_records]

Get index data.
index_records = client.command(ORIENTDB_INDEX_RECORDS_QUERY)
index_query_data = [record.oRecordData for record in index_records]

Build SchemaGraph.
schema_graph = get_orientdb_schema_graph(schema_data, index_query_data)

Get all the subclasses of a class.
print(schema_graph.get_subclass_set('Animal'))
{'Animal', 'Dog'}

Get all the outgoing edge classes of a vertex class.
print(schema_graph.get_vertex_schema_element_or_raise('Animal').out_connections)
{'Animal_Eats', 'Animal_FedAt', 'Animal_LivesIn'}

Get the vertex classes allowed as the destination vertex of an edge class.
print(schema_graph.get_edge_schema_element_or_raise('Animal_Eats').out_connections)
{'Fruit', 'Food'}

Get the superclass of all classes allowed as the destination vertex of an edge
→˓class.
print(schema_graph.get_edge_schema_element_or_raise('Animal_Eats').base_out_
→˓connection)
Food

Get the unique indexes defined on a class.
print(schema_graph.get_unique_indexes_for_class('Animal'))
[IndexDefinition(name='uuid', 'base_classname'='Animal', fields={'uuid'},
→˓unique=True, ordered=False, ignore_nulls=False)]

We currently support SchemaGraph auto-generation for both OrientDB and SQL database backends. In the future,
we plan to add a mechanism where one can query a SchemaGraph using GraphQL queries.

2.3.3 Additional Tools

GraphQL Query Pretty-Printer

To pretty-print GraphQL queries, use the included pretty-printer:

python -m graphql_compiler.tool <input_file.graphql >output_file.graphql

It’s modeled after Python’s json.tool, reading from stdin and writing to stdout.

2.4 About GraphQL compiler

To learn more about the GraphQL compiler project see:

• Contributing for instructions on how you can contribute.

44 Chapter 2. Features

GraphQL Compiler

• Code of Conduct for the contributor code of conduct.

• Changelog for a history of changes.

• FAQ for a list of frequently asked questions.

• Execution Model to learn more about the design principles guiding the development of the compiler and the
guarantees the compiler provides.

2.4.1 Contributing

Thank you for taking the time to contribute to this project!

To get started, make sure that you have pipenv, docker and docker-compose installed on your computer.

Although GraphQL compiler supports multiple Python 3.6+ versions, we have chosen to use Python 3.8 for develop-
ment. If you do not already have it installed, consider doing so using pyenv.

If developing on Linux, please also ensure that your Python installation includes header files. The command to install
Python header files should look something like this, depending on chosen flavor of Linux. ..

sudo apt-get install python3.8-dev

Database Driver Installations

Integration tests are run against multiple databases, some of which require that you install specific drivers. Below
you’ll find the installation instructions for these drivers for Ubuntu and OSX. You might need to run some of the
commands with sudo depending on your local setup.

MySQL Driver

For MySQL a compatible driver can be installed on OSX with:

brew install mysql

or on Ubuntu with:

apt-get install libmysqlclient-dev python-mysqldb

For more details on other systems please refer to MySQL dialect information.

Microsoft SQL Server ODBC Driver

For MSSQL, you can install the required ODBC driver on OSX with:

brew tap microsoft/mssql-release https://github.com/Microsoft/homebrew-mssql-release
brew install msodbcsql17 mssql-tools

Or Ubuntu with:

wget -qO- https://packages.microsoft.com/keys/microsoft.asc | sudo apt-key add -
add-apt-repository "$(wget -qO- https://packages.microsoft.com/config/ubuntu/"$(lsb_
→˓release -r -s)"/prod.list)"
apt-get update

(continues on next page)

2.4. About GraphQL compiler 45

https://github.com/pyenv/pyenv
https://docs.sqlalchemy.org/en/latest/dialects/mysql.html

GraphQL Compiler

(continued from previous page)

ACCEPT_EULA=Y apt-get install msodbcsql17
apt-get install unixodbc-dev

To see the installation instructions for other operating systems, please follow this link.

Running tests

Once the dev environment is prepared, you can run the tests, from the root repository, with:

docker-compose up -d
pipenv sync --dev
pipenv shell

pytest graphql_compiler/tests

Some snapshot and integration tests take longer to setup, run, and teardown. These can be optionally skipped during
development by running:

pytest -m 'not slow'

If you run into any issues, please consult the troubleshooting guide. If you encounter and resolve an issue that is not
already part of the troubleshooting guide, we’d appreciate it if you open a pull request and update the guide to make
future development easier.

A test method or class can be marked as slow to be skipped in this fashion by decorating with the @pytest.mark.
slow flag.

Code of Conduct

This project adheres to the Contributor Covenant code of conduct. By participating, you are expected to uphold this
code. Please report unacceptable behavior at graphql-compiler-maintainer@kensho.com.

Contributor License Agreement

Each contributor is required to agree to our Contributor License Agreement, to ensure that their contribution may be
safely merged into the project codebase and released under the existing code license. This agreement does not change
contributors’ rights to use the contributions for any other purpose – it is simply used for the protection of both the
contributors and the project.

Style Guide

This project primarily follows the PEP 8 style guide, and secondarily the Google Python style guide. If the style guides
differ on a convention, the PEP 8 style guide is preferred.

Additionally, any contributions must pass the linter scripts/lint.sh when executed from a pipenv shell (i.e.
after running pipenv shell). To run the linter on changed files only, commit your changes and run scripts/
lint.sh --diff. Some linters can automatically fix errors. Use scripts/fix_lint.sh to run the automatic
fixes.

Finally, all python files in the repository must display the copyright of the project, to protect the terms of the license.
Please make sure that your files start with a line like:

46 Chapter 2. Features

https://docs.microsoft.com/en-us/sql/connect/odbc/linux-mac/installing-the-microsoft-odbc-driver-for-sql-server?view=sql-server-2017&viewFallbackFrom=ssdt-18vs2017
https://graphql-compiler.readthedocs.io/en/latest/about/code_of_conduct.html
mailto:graphql-compiler-maintainer@kensho.com
https://www.clahub.com/agreements/kensho-technologies/graphql-compiler
https://www.python.org/dev/peps/pep-0008/
https://google.github.io/styleguide/pyguide.html

GraphQL Compiler

Copyright 20xx-present Kensho Technologies, LLC.

Read the Docs

To host our documentation we use Read the Docs, a web utility that makes it easy to view and present documentation.

We have taken measures so that the hosted documentation is updated, tested and monitored automatically. We
configured a Github webhook so that the hosted documentation is updated every time the main branch gets up-
dated, test the documentation during CI and configured Read the Docs to send notifications to graphql-compiler-
maintainer@kensho.com in case there are any issues with building the documentation that were not caught during
CI.

Since Read the Docs does not currently support Pipfiles, we must keep the documentation building requirements
in both the repository’s Pipfile, which we use for continuous integration and local development, and in docs/
requirements.txt, which we use for Read The Docs.

The relevant documentation source code lives in:

docs/source

To build the website run:

pipenv shell
cd docs
make clean
make html

Then open docs/build/index.html with a web browser to view it.

Troubleshooting Guide

Issues starting MySQL, PostgreSQL, or redis server with docker-compose

If you have any trouble starting the MySQL/PostgreSQL database or the redis server, make sure any database service
or any other related service is not already running outside of docker. On OSX, you can stop the MySQL, PostgreSQL,
and redis server services by executing:

brew services stop mysql
brew services stop postgresql
brew services stop redis-server

or on Ubuntu with:

service mysql stop
service postgresql stop
service redis-server stop

Issues installing the Python MySQL package

Sometimes, precompiled wheels for the Python MySQL package are not available, and your pipenv may try to build
the wheels itself. This has happened on OSX and Ubuntu.

2.4. About GraphQL compiler 47

mailto:graphql-compiler-maintainer@kensho.com
mailto:graphql-compiler-maintainer@kensho.com
https://github.com/readthedocs/readthedocs.org/issues/3181

GraphQL Compiler

OSX

You may then sometimes see an error like the following:

[pipenv.exceptions.InstallError]: File "/usr/local/lib/python3.7/site-packages/
→˓pipenv/core.py", line 1874, in do_install
[pipenv.exceptions.InstallError]: keep_outdated=keep_outdated
[pipenv.exceptions.InstallError]: File "/usr/local/lib/python3.7/site-packages/
→˓pipenv/core.py", line 1253, in do_init
[pipenv.exceptions.InstallError]: pypi_mirror=pypi_mirror,
[pipenv.exceptions.InstallError]: File "/usr/local/lib/python3.7/site-packages/
→˓pipenv/core.py", line 859, in do_install_dependencies
[pipenv.exceptions.InstallError]: retry_list, procs, failed_deps_queue,
→˓requirements_dir, **install_kwargs
[pipenv.exceptions.InstallError]: File "/usr/local/lib/python3.7/site-packages/
→˓pipenv/core.py", line 763, in batch_install
[pipenv.exceptions.InstallError]: _cleanup_procs(procs, not blocking, failed_
→˓deps_queue, retry=retry)
[pipenv.exceptions.InstallError]: File "/usr/local/lib/python3.7/site-packages/
→˓pipenv/core.py", line 681, in _cleanup_procs
[pipenv.exceptions.InstallError]: raise exceptions.InstallError(c.dep.name,
→˓extra=err_lines)
[pipenv.exceptions.InstallError]: ['Collecting mysqlclient==1.3.14
...
< lots of error output >
...
ld: library not found for -lssl
...
< lots more error output >
...
error: command 'clang' failed with exit status 1
...

The solution is to install OpenSSL on your system:

brew install openssl

Then, make sure that clang is able to find it by adding the following line to your .bashrc.

export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/opt/openssl/lib/

Ubuntu 18.04

When running

pipenv install --dev

you might get an error like the following:

[pipenv.exceptions.InstallError]: File "/home/$USERNAME/.local/lib/python2.7/site-
→˓packages/pipenv/core.py", line 1875, in do_install

[pipenv.exceptions.InstallError]: keep_outdated=keep_outdated

[pipenv.exceptions.InstallError]: File "/home/$USERNAME/.local/lib/python2.7/site-
→˓packages/pipenv/core.py", line 1253, in do_init

(continues on next page)

48 Chapter 2. Features

GraphQL Compiler

(continued from previous page)

[pipenv.exceptions.InstallError]: pypi_mirror=pypi_mirror,

[pipenv.exceptions.InstallError]: File "/home/$USERNAME/.local/lib/python2.7/site-
→˓packages/pipenv/core.py", line 859, in do_install_dependencies

[pipenv.exceptions.InstallError]: retry_list, procs, failed_deps_queue,
→˓requirements_dir, **install_kwargs

[pipenv.exceptions.InstallError]: File "/home/$USERNAME/.local/lib/python2.7/site-
→˓packages/pipenv/core.py", line 763, in batch_install

[pipenv.exceptions.InstallError]: _cleanup_procs(procs, not blocking, failed_
→˓deps_queue, retry=retry)

[pipenv.exceptions.InstallError]: File "/home/$USERNAME/.local/lib/python2.7/site-
→˓packages/pipenv/core.py", line 681, in _cleanup_procs

[pipenv.exceptions.InstallError]: raise exceptions.InstallError(c.dep.name,
→˓extra=err_lines)

[pipenv.exceptions.InstallError]: ['Collecting mysqlclient==1.3.14 (from -r /tmp/
→˓pipenv-ZMU3RA-requirements/pipenv-n_utvZ-requirement.txt (line 1))', ' Using
→˓cached https://files.pythonhosted.org/packages/f7/a2/
→˓1230ebbb4b91f42ad6b646e59eb8855559817ad5505d81c1ca2b5a216040/mysqlclient-1.3.14.tar.
→˓gz']

[pipenv.exceptions.InstallError]: ['ERROR: Complete output from command python setup.
→˓py egg_info:', ' ERROR: /bin/sh: 1: mysql_config: not found', ' Traceback
→˓(most recent call last):', ' File "<string>", line 1, in <module>', '
→˓File "/tmp/pip-install-ekmq8s3j/mysqlclient/setup.py", line 16, in <module>', '
→˓ metadata, options = get_config()', ' File "/tmp/pip-install-ekmq8s3j/
→˓mysqlclient/setup_posix.py", line 53, in get_config', ' libs = mysql_config(
→˓"libs_r")', ' File "/tmp/pip-install-ekmq8s3j/mysqlclient/setup_posix.py",
→˓line 28, in mysql_config', ' raise EnvironmentError("%s not found" % (mysql_
→˓config.path,))', ' OSError: mysql_config not found', ' -----------------------
→˓-----------------', 'ERROR: Command "python setup.py egg_info" failed with error
→˓code 1 in /tmp/pip-install-ekmq8s3j/mysqlclient/']

The solution is to install MySQL:

sudo apt-get install python3.8-dev libmysqlclient-dev

after which

pipenv install --dev

should work fine.

This error might happen even if you’ve run

apt-get install python-mysqldb

because that only installs the interface to MySQL.

2.4. About GraphQL compiler 49

GraphQL Compiler

Issues with pyodbc

If you have any issues installing pydobc when running pipenv install, then it might mean that you have failed
to correctly install the ODBC driver.

Another reason that your pyodbc installation might fail is because your python installation did not include the required
header files. This issue has only affected Ubuntu users so far and can be resolved on Ubuntu by running:

2.4.2 Contributor Covenant Code of Conduct

Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience
for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity
and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion,
or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.

Our Standards

Examples of behavior that contributes to a positive environment for our community include:

• Demonstrating empathy and kindness toward other people

• Being respectful of differing opinions, viewpoints, and experiences

• Giving and gracefully accepting constructive feedback

• Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience

• Focusing on what is best not just for us as individuals, but for the overall community

Examples of unacceptable behavior include:

• The use of sexualized language or imagery, and sexual attention or advances of any kind

• Trolling, insulting or derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or email address, without their explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take
appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki ed-
its, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for
moderation decisions when appropriate.

50 Chapter 2. Features

GraphQL Compiler

Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially repre-
senting the community in public spaces. Examples of representing our community include using an official e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders respon-
sible for enforcement at graphql-compiler-maintainer@kensho.com. All complaints will be reviewed and investigated
promptly and fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action
they deem in violation of this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the
community.

Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation
and an explanation of why the behavior was inappropriate. A public apology may be requested.

2. Warning

Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the people involved, includ-
ing unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes
avoiding interactions in community spaces as well as external channels like social media. Violating these terms may
lead to a temporary or permanent ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communication with the community for a
specified period of time. No public or private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent
ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate
behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.

2.4. About GraphQL compiler 51

mailto:graphql-compiler-maintainer@kensho.com

GraphQL Compiler

Consequence: A permanent ban from any sort of public interaction within the community.

Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 2.0, available at https://contributor-
covenant.org/version/2/0

2.4.3 Changelog

Current development version

v2.0.0 (upcoming release)

• BREAKING Change the GraphQLDateTime scalar type from being timezone-aware to being timezone-
naive to follow the usual database convention of naming the timezone-naive type “datetime” and avoid confusion
after we’ve added both timezone-aware and timezone-naive types. #827

v1.11.0

• Release automatic GraphQL schema generation from OrientDB schema metadata. #204

• Release the SchemaGraph, a utility class designed for easy schema introspection. #292

• Release not_contains and not_in_collection filter operations. #349 #350

• Allow out-of-order @tag and @filter when in the same scope. #351

• Fix a bug causing MATCH queries to have missing type coercions. #332

• Release functionality that is able to amend parsing and serialization of custom scalar types in schemas parsed
from text form. #398

• Improve validation error messages for output and parameter names. #414 #416

• Alpha (unstable) release of query cost estimation functionality. #345

• Clean up README.md and update troubleshooting documentation.

• Many maintainer quality-of-life improvements.

Thanks to 0xflotus, bojanserafimov, evantey, LWProgramming, pmantica1, qqi0O0, and Vlad for
their contributions.

v1.10.1

• Fix _x_count and optional filter creating duplicate GlobalOperationsStart IR blocks. #253.

• Raise error for unused @tag directives #224.

• Much documentation cleanup and many maintainer quality-of-life improvements.

Thanks to bojanserafimov, evantey14, jeremy.meulemans, and pmantica1 for their contributions.

v1.10.0

• BREAKING: Rename the __count meta field to _x_count, to avoid GraphQL schema parsing issues with
other GraphQL libraries. #176

52 Chapter 2. Features

http://contributor-covenant.org
https://contributor-covenant.org/version/2/0/
https://contributor-covenant.org/version/2/0/
https://github.com/kensho-technologies/graphql-compiler/pull/827
https://github.com/kensho-technologies/graphql-compiler/pull/204
https://github.com/kensho-technologies/graphql-compiler/pull/292
https://github.com/kensho-technologies/graphql-compiler/pull/349
https://github.com/kensho-technologies/graphql-compiler/pull/350
https://github.com/kensho-technologies/graphql-compiler/pull/351
https://github.com/kensho-technologies/graphql-compiler/pull/332
https://github.com/kensho-technologies/graphql-compiler/pull/398
https://github.com/kensho-technologies/graphql-compiler/pull/414
https://github.com/kensho-technologies/graphql-compiler/pull/416
https://github.com/kensho-technologies/graphql-compiler/pull/345
https://github.com/kensho-technologies/graphql-compiler/pull/253
https://github.com/kensho-technologies/graphql-compiler/pull/224
https://github.com/kensho-technologies/graphql-compiler/pull/176

GraphQL Compiler

v1.9.0

• Add a __count meta field that supports outputting and filtering on the size of a @fold scope. #158

• Add scaffolding for development and testing of SQL compiler backend, and a variety of development quality-
of-life improvements.

Thanks to jmeulemans for his contributions.

v1.8.3

• Explicit support for Python 3.7. Earlier compiler versions also worked on 3.7, but now we also run tests in 3.7
to confirm. #148

• Bug fix for compilation error when using has_edge_degree and between filtering in the same scope. #146

• Exposed additional query metadata that describes @recurse and @filter directives encountered in the
query. #141

Thanks to gurer-kensho for the contribution.

v1.8.2

• Fix overly strict type check on @recurse directives involving a union type. #131

Thanks to cw6515 for the fix!

v1.8.1

• Fix a bug that arose when using certain type coercions that the compiler optimizes away to a no-op. #127

Thanks to bojanserafimov for the fix!

v1.8.0

• Allow @optional vertex fields nested inside other @optional vertex fields. #120

• Fix a bug that accidentally disallowed having two @recurse directives within the same vertex field. #115

• Enforce that all required directives are present in the schema. #114

• Under the hood, made fairly major changes to how query metadata is tracked and processed.

Thanks to amartyashankha, cw6515, and yangsong97 for their contributions!

v1.7.2

• Fix possible incorrect query execution due to dropped type coercions. #110 #113

v1.7.0

• Add a new @filter operator: intersects. #100

• Add an optimization that helps OrientDB choose a good starting point for query evaluation. #102

2.4. About GraphQL compiler 53

https://github.com/kensho-technologies/graphql-compiler/pull/158
https://github.com/kensho-technologies/graphql-compiler/pull/148
https://github.com/kensho-technologies/graphql-compiler/pull/146
https://github.com/kensho-technologies/graphql-compiler/pull/141/files
https://github.com/kensho-technologies/graphql-compiler/pull/131
https://github.com/kensho-technologies/graphql-compiler/pull/127
https://github.com/kensho-technologies/graphql-compiler/pull/120
https://github.com/kensho-technologies/graphql-compiler/pull/115
https://github.com/kensho-technologies/graphql-compiler/pull/114
https://github.com/kensho-technologies/graphql-compiler/pull/110
https://github.com/kensho-technologies/graphql-compiler/pull/113
https://github.com/kensho-technologies/graphql-compiler/pull/100
https://github.com/kensho-technologies/graphql-compiler/pull/102

GraphQL Compiler

The new optimization pass manages what type information is visible at different points in the generated query. By
exposing additional type information, or hiding existing type information, the compiler maximizes the likelihood that
OrientDB will start evaluating the query at the location of lowest cardinality. This produces a massive performance
benefit – up to 1000x on some queries!

Thanks to yangsong97 for making his first contribution with the intersects operator!

v1.6.2

• Fix incorrect filtering in @optional locations. #95

Thanks to amartyashankha for the fix!

v1.6.1

• Fix a bad compilation bug on @fold and @optional in the same scope. #86

Thanks to amartyashankha for the fix!

v1.6.0

• Add full support for Decimal data, including both filtering and output. #91

v1.5.0

• Allow expanding vertex fields within @optional scopes. #83

This is a massive feature, totaling over 4000 lines of changes and hundreds of hours of many engineers’ time. Special
thanks to amartyashankha for taking point on the implementation!

This feature implements a workaround for a limitation of OrientDB, where MATCH treats optional vertices as terminal
and does not allow subsequent traversals from them. To work around this issue, the compiler rewrites the query into
several disjoint queries whose union produces the exact same results as a single query that allows optional traversals.
See this link for more details.

v1.4.1

• Make MATCH use the BETWEEN operator when possible, to avoid an OrientDB performance issue #70

Thanks to amartyashankha for this contribution!

v1.4.0

• Enable expanding vertex fields inside @fold #64

Thanks to amartyashankha for this contribution!

v1.3.1

• Add a workaround for a bug in OrientDB related to @recurse with type coercions #55

• Exposed the package name and version in the root __init__.py file #57

54 Chapter 2. Features

https://github.com/kensho-technologies/graphql-compiler/pull/95
https://github.com/kensho-technologies/graphql-compiler/pull/86
https://github.com/kensho-technologies/graphql-compiler/pull/91
https://github.com/kensho-technologies/graphql-compiler/pull/83
https://graphql-compiler.readthedocs.io/en/latest/supported_databases/orientdb.html#compound-optional-performance-penalty
https://github.com/orientechnologies/orientdb/issues/8230
https://github.com/kensho-technologies/graphql-compiler/pull/70
https://github.com/kensho-technologies/graphql-compiler/pull/64
https://github.com/kensho-technologies/graphql-compiler/pull/55
https://github.com/kensho-technologies/graphql-compiler/pull/57

GraphQL Compiler

v1.3.0

• Add a new @filter operator: has_edge_degree. #52

• Lots of under-the-hood cleanup and improvements.

v1.2.1

• Add workaround for OrientDB type inconsistency when filtering lists #42

v1.2.0

• BREAKING: Requires OrientDB 2.2.28+, since it depends on two OrientDB bugs being fixed: bug 1 bug 2

• Allow type coercions and filtering within @fold scopes.

• Fix bug where @filter directives could end up ignored if more than two were in the same scope

• Optimize type coercions in @optional and @recurse scopes.

• Optimize multiple outputs from the same @fold scope.

• Allow having multiple @filter directives on the same field #33

• Allow using the name_or_alias filtering operation on interface types #37

v1.1.0

• Add support for Python 3 #31

• Make it possible to use @fold together with union-typed vertex fields #32

Thanks to ColCarroll for making the compiler support Python 3!

v1.0.3

• Fix a minor bug in the GraphQL pretty-printer #30

v1.0.2

• Make the graphql_to_ir() easier to use by making it automatically add a new line to the end of the
GraphQL query string. Works around an issue in the graphql-coredependency library: https://github.com/
graphql-python/graphql-core/issues/98

• Robustness improvements for the pretty-printer #27

Thanks to benlongo for their contributions.

v1.0.1

• Add GraphQL pretty printer: python -m graphql_compiler.tool #23

• Raise errors if there are no @output directives within a @fold scope #18

Thanks to benlongo, ColCarroll, and cw6515 for their contributions.

2.4. About GraphQL compiler 55

https://github.com/kensho-technologies/graphql-compiler/pull/52
https://github.com/orientechnologies/orientdb/issues/7811
https://github.com/kensho-technologies/graphql-compiler/pull/42
https://github.com/orientechnologies/orientdb/issues/7225
https://github.com/orientechnologies/orientdb/issues/7754
https://github.com/kensho-technologies/graphql-compiler/pull/33
https://github.com/kensho-technologies/graphql-compiler/pull/37
https://github.com/kensho-technologies/graphql-compiler/pull/31
https://github.com/kensho-technologies/graphql-compiler/pull/32
https://github.com/kensho-technologies/graphql-compiler/pull/30
https://github.com/graphql-python/graphql-core/issues/98
https://github.com/graphql-python/graphql-core/issues/98
https://github.com/kensho-technologies/graphql-compiler/pull/27
https://github.com/kensho-technologies/graphql-compiler/pull/23
https://github.com/kensho-technologies/graphql-compiler/pull/18

GraphQL Compiler

v1.0.0

Initial release.

Thanks to MichaelaShtilmanMinkin for the help in putting the documentation together.

2.4.4 Frequently Asked Questions

Q: Do you really use GraphQL, or do you just use GraphQL-like syntax?

A: We really use GraphQL. Any query that the compiler will accept is entirely valid GraphQL, and we actually use the
Python port of the GraphQL core library for parsing and type checking. However, since the database queries produced
by compiling GraphQL are subject to the limitations of the database system they run on, our execution model is
somewhat different compared to the one described in the standard GraphQL specification.

Q: Does this project come with a GraphQL server implementation?

A: No – there are many existing frameworks for running a web server. We simply built a tool that takes GraphQL
query strings (and their parameters) and returns a query string you can use with your database. The compiler does not
execute the query string against the database, nor does it deserialize the results. Therefore, it is agnostic to the choice
of server framework and database client library used.

Q: Do you plan to support other databases / more GraphQL features in the future?

A: We’d love to, and we could really use your help! Please consider contributing to this project by opening issues,
opening pull requests, or participating in discussions.

Q: I think I found a bug, what do I do?

A: Please check if an issue has already been created for the bug, and open a new one if not. Make sure to describe
the bug in as much detail as possible, including any stack traces or error messages you may have seen, which database
you’re using, and what query you compiled.

Q: I think I found a security vulnerability, what do I do?

A: Please reach out to us at graphql-compiler-maintainer@kensho.com so we can triage the issue and take appropriate
action.

2.4.5 Execution model

Since the GraphQL compiler can target multiple different query languages, each with its own behaviors and limitations,
the execution model must also be defined as a function of the compilation target language. While we strive to minimize
the differences between compilation targets, some differences are unavoidable.

The compiler abides by the following principles:

• When the database is queried with a compiled query string, its response must always be in the form of a list of
results.

• The precise format of each such result is defined by each compilation target separately.

– gremlin, MATCH and SQL return data in a tabular format, where each result is a row of the table, and
fields marked for output are columns.

– However, future compilation targets may have a different format. For example, each result may appear in
the nested tree format used by the standard GraphQL specification.

• Each such result must satisfy all directives and types in its corresponding GraphQL query.

• The returned list of results is not guaranteed to be complete! (This currently only applies to Gremlin - please
follow this link for more information on the issue).

56 Chapter 2. Features

mailto:graphql-compiler-maintainer@kensho.com

GraphQL Compiler

– In other words, there may have been additional result sets that satisfy all directives and types in the corre-
sponding GraphQL query, but were not returned by the database.

– However, compilation target implementations are encouraged to return complete results if at all practical.
The MATCH compilation target is guaranteed to produce complete results.

2.4. About GraphQL compiler 57

	Getting Started
	Generating the necessary schema info
	Query Compilation and Execution

	Features
	Language Specification
	Supported Databases
	Advanced Features
	About GraphQL compiler

