GraphQL Compiler

Jun 02, 2021

Contents

1 Getting Started 3
1.1 Generating the necessary schemainfo 3
1.2 Query Compilation and Execution 4
2 Features 5
2.1 Language Specification L e e e e e e e e e 5
2.2 Supported Databases e e 32
2.3 Advanced Features e e e e e e 37
24 About GraphQL compiler e 44

GraphQL Compiler

GraphQL compiler is a library that simplifies data querying and exploration by exposing one simple query language
to target multiple database backends. The query language is:

Written in valid GraphQL syntax Since it uses GraphQL syntax, the user get access to the entire GraphQL ecosys-
tem, including the typeahead capabilities and query validation capabilities of GraphiQL, user friendly error
messages from the reference GraphQL python implementation, and more.

Directly compiled to the target database language By compiling instead of interpreting the query language, the
compiler highly improves query performance and empowers the user with the ability to write deep and complex
queries. Furthermore, by using schema information from the target database, the compiler is able to extensively
validate queries, often more so than the DB-API, (e.g. pymssql).

Contents 1

https://github.com/graphql/graphiql

GraphQL Compiler

2 Contents

CHAPTER 1

Getting Started

1.1 Generating the necessary schema info

To use GraphQL compiler the first thing one needs to do is to generate the schema info from the underlying database
as in the example below. Even though the example targets an OrientDB database, it is meant as a generic schema info
generation example. See the homepage of your target database for more instructions on how to generate the necessary
schema info.

from graphgl_compiler import (

get_graphgl_schema_from_orientdb_schema_data
)
from graphgl compiler.schema_generation.orientdb.utils import ORIENTDB_SCHEMA_RECORDS_
—QUERY

client = your_function_that_returns_a_pyorient_client ()

schema_records = client.command (ORIENTDB_SCHEMA_RECORDS_QUERY)

schema_data = [record.oRecordData for record in schema_records]

schema, type_equivalence_hints = get_graphqgl_schema_from_orientdb_schema_data (schema_
—data)

In the snippet above the are two pieces of schema info:
* schema which represents the database using GraphQL’s type system.

* type_equivalence_hints which helps deal with GraphQL’s lack of concrete inheritance, (see schema
types for more info).

When compiling, these will need to be bundled in a CommonSchemaInfo object.

Besides representing the database schema, a GraphQL schema includes other metadata such as a list of custom scalar
types used by the compiler. We’ll talk more about this metadata in schema types. For now let’s focus on how a database
schema might be represented in a GraphQL schema:

type Animal {
name: String

(continues on next page)

GraphQL Compiler

(continued from previous page)

out_Animal_ LivesIn: [Continent]

type Continent {
name: String
in_AnimalLivesIn: [Animal]

In the GraphQL schema above:

e Animal represents a concrete, (non-abstract), vertex type. For relational databases, we think of tables as the
concrete vertex types.

* name is a property field which represents a property of the Animal vertex type. Think of property fields as
leaf fields that represent concrete data.

e out_Animal_ LivesIn is a vertex field which represents an outbound edge to a vertex type in the graph.
For graph databases, edges can be automatically generated from the database schema. However, for relational
databases, edges currently have to be manually specified. See SOL for more information.

1.2 Query Compilation and Execution

Once we have the schema info we can write the following query to get the names of all the animals that live in Africa:

graphgl_gquery = """
{
Animal {
name @output (out_name: "animal_name")
out_Animal_LivesIn {

name @filter (op_name: "=", wvalue: ["S$Scontinent"]

}

nwn

parameters = {'continent': '"Africa'}

There are a couple of things to notice about queries:
 All queries start with a vertex type, (e.g. Animal), and expand to other vertex types using vertex fields.

* Directives specify the semantics of a query. Qoutput indicates the properties whose values should be returned.
@filter specifies a filter operation.

Finally, with the GraphQL query and its parameters at hand, we can use the compiler to obtain a query that we can
directly execute against OrientDB.

from graphgl_ compiler import graphgl_to_match

compilation_result = graphgl_to_match (
schema, graphgl_guery, parameters, type_equivalence_hints)

Executing query assuming a pyorient client. Other clients may have a different,

—~interface.
print ([result.oRecordData for result in client.query(query)])
[{'animal_name': 'Elephant'}, {'animal_name': 'Lion'}, ...]

4 Chapter 1. Getting Started

CHAPTER 2

Features

2.1 Language Specification

To learn more about the language specification see:
* Definitions, for the definitions of key terms that we use to define the language.

* Schema Types, for information about the full breadth of schema types that we use to represent database schemas
and how to interact with them using GraphQL queries.

* Query Directives, to learn more about the available directives and how to use them to create powerful queries.

2.1.1 Definitions

e Vertex field: A field corresponding to a vertex in the graph. In the below example, Animal and
out_Entity_Related are vertex fields. The Animal field is the field at which querying starts, and is
therefore the root vertex field. In any scope, fields with the prefix out__ denote vertex fields connected by an
outbound edge, whereas ones with the prefix in_ denote vertex fields connected by an inbound edge.

{
Animal {
name Q@output (out_name: "name™)
out_Entity_Related {
. on Species {
description @output (out_name: "description")

}

* Property field: A field corresponding to a property of a vertex in the graph. In the above example, the name
and description fields are property fields. In any given scope, property fields must appear before vertex
fields.

GraphQL Compiler

* Result set: An assignment of vertices in the graph to scopes (locations) in the query. As the database processes
the query, new result sets may be created (e.g. when traversing edges), and result sets may be discarded when
they do not satisfy filters or type coercions. After all parts of the query are processed by the database, all
remaining result sets are used to form the query result, by taking their values at all properties marked for output.

* Scope: The part of a query between any pair of curly braces. The compiler infers the type of each scope. For
example, in the above query, the scope beginning with Animal { is of type Animal, the one beginning with
out_Entity_Related {isoftypeEntity, and the onebeginningwith ... on Species {isoftype
Species.

* Type coercion: An operation that produces a new scope of narrower type than the scope in which it exists. Any
result sets that cannot satisfy the narrower type are filtered out and not returned. In the above query, ... on
Species is a type coercion which takes its enclosing scope of type Entity, and coerces it into a narrower
scope of type Species. This is possible since Ent ity is an interface, and Species is a type that implements
the Ent ity interface.

2.1.2 Schema Types

A GraphQL schema might look like the one below. Do not be intimidated by the number of components since we will
immediately proceed to dissect the schema.

schema {
query: RootSchemaQuery

type RootSchemaQuery {

Animal: [Animal]

Entity: [Entity]

Food: [Food]

Species: [Species]

Toy: [Toy]
directive @filter (op_name: String!, value: [String!]) on FIELD | INLINE_FRAGMENT
directive @tag(tag_name: String!) on FIELD
directive @output (out_name: String!) on FIELD
directive @output_source on FIELD
directive @optional on FIELD
directive @recurse (depth: Int!) on FIELD
directive @fold on FIELD
scalar Date
scalar DateTime
scalar Decimal
type Animal implements Entity {

_x_count: Int
uuid: ID

(continues on next page)

6 Chapter 2. Features

GraphQL Compiler

(continued from previous page)

name: String

alias: [String]

color: String

birthday: Date

net_worth: Decimal
in_Animal_ParentOf: [Animal]
out_Animal_ ParentOf: [Animal]
in_Entity_Related: [Entity]
out_Entity_Related: [Entity]
out_Animal_OfSpecies: [Species]
out_Animal_PlaysWith: [Toy]

type Food implements Entity {
_x_count: Int

uuid: ID
name: String
alias: [String]

in_Entity_Related: [Entity]
out_Entity_Related: [Entity]
in_Species_Eats: [Species]

type Species implements Entity {
_x_count: Int

uuid: ID
name: String
alias: [String]

in_Animal_OfSpecies: [Animal]
in_Entity_Related: [Entity]
out_Entity_Related: [Entity]

in_Species_Eats: [Species]
out_Species_Eats: [Union__ Food__Species]
}
type Toy {
_X_count: Int
uuid: ID

name: String
in_Animal_PlaysWith: [Animal]

interface Entity {
_X_count: Int

uuid: ID
name: String
alias: [String]

in_Entity_Related: [Entity]
out_Entity_Related: [Entity]

union Union__Food__Species = Food | Species

Note: A GraphQL schema can be serialized with the print_schema function from the graphgl.utils.

schema_printer module.

2.1. Language Specification

GraphQL Compiler

Objects types and fields

The core components of a GraphQL schema are GraphQL object types. They conceptually represent the concrete
vertex types in the underlying database. For relational databases, we think of the tables as the concrete vertex types.

Lets go over a toy example of a GraphQL object type:

type Toy {
_xX_count: Int
name: String
in_Animal_PlaysWith: [Animal]

Here are some of the details:
* _x_count: is ameta field. Meta fields are an advanced compiler feature.
* name is a property field that represents concrete data.
* in_Animal_PlaysWith is a vertex field representing an inbound edge.
* Stringis a built-in GraphQL scalar type.

* [Animal] is a GraphQL list representing a list of Animal objects.

Directives

Directives are keywords that modify query execution. The compiler includes a list of directives, which we’ll talk about
more in the guery directives section. For now lets see how they are defined by looking at an example:

directive (@output (out_name: String!) on FIELD

¢ @output defines the directive name.
e out_name: String! isa GraphQL argument. The ! indicates that it must not be null.

* on FIELD defines where the directive can be located. According to the definition, this directive can only be
located next to fields. The compiler might have additional restrictions for where a query can be located.

Scalar types

The compiler uses the built-in GraphQL scalar types as well as three custom scalar types:
* DateTime represents timezone-naive second-accuracy timestamps.
* Date represents day-accuracy date objects.

e Decimal is an arbitrary-precision decimal number object useful for representing values that should never be
rounded, such as currency amounts.

Operation types

GraphQL allows for three operation types query, mutation and subscription. The compiler only allows for read-only
query operation types as shown in the code snippet below:

schema {
query: RootSchemaQuery

8 Chapter 2. Features

https://graphql.org/learn/schema/#scalar-types

GraphQL Compiler

A query may begin in any of the root vertex types specified by the special Root SchemaQuery object type:

type RootSchemaQuery {
Animal: [Animal]
Entity: [Entity]
Food: [Food]
Species: [Species]
Toy: [Toy]

Inheritance

The compiler uses interface and union types in representing the inheritance structure of the underlying schema. Some
database backends do not support inheritance, (e.g. SQL), so this feature is only supported for certain backends.

Interface types

Object types may declare that they implement an interface type, meaning that they contain all property and vertex fields
that the interface declares. In many programming languages, this concept is called interface inheritance or abstract
inheritance. The compiler uses interface implementation in the GraphQL schema to model the abstract inheritance in
the underlying database.

interface Entity {
_xX_count: Int
name: String
alias: [String]
in_Entity_Related: [Entity]
out_Entity_Related: [Entity]

type Food implements Entity {
_xX_count: Int
name: String
alias: [String]
in_Entity_Related: [Entity]
out_Entity_Related: [Entity]
in_Species_Eats: [Species]

Querying an interface type without any type coercion returns all of the the objects implemented by the interface. For
instance, the following query returns the name of all Food, Species and Animal objects.

{
Entity {
name Qoutput (out_name: "entity_ name")

Union types and type_equivalence_hints

GraphQL'’s type system does not allow object types to inherit other object types (i.e. it has no notion of concrete
inheritance). However, to model the database schema of certain backends and to emit the right query in certain cases,
the compiler needs to have a notion of the underlying concrete inheritance.

2.1. Language Specification 9

GraphQL Compiler

In order to work around this limitation, the GraphQL compiler uses GraphQL union types as means of listing the
subclasses of an object with multiple implicit subclasses. It also takes in a type_equivalence_hints parameter
to match an object type with the union type listing its subclasses.

For example, suppose Food and Species are concrete types and Food is a superclass of Species in an OrientDB
schema. Then the GraphQL schema info generation function would generate a union type in the schema

| Species

union Union__Food__Species = Food

as well an entry in type_equivalence_hints mapping Food to Union_Food_Species.

To query an union type, one must always type coerce to one of the encompassed object types as illustrated in the
section below.

Type coercions

Type coercions are operations than can be run against interfaces and unions to create a new scope whose type is
different than the type of the enclosing scope of the coercion. Type coercions are represented with GraphQL inline
fragments.

Example Use

Species {
name Q@output (out_name: "species_name")
out_Species_Eats {
on Food {
name Qoutput (out_name: "food_ name")

Here, the out_Species_Eats vertex field is of the Union_ Food__FoodOrSpecies_ Species
union type. To proceed with the query, the user must choose which of the types in the
Union__Food__FoodOrSpecies__Species union to use. In this example, ... on Food indicates
that the Food type was chosen, and any vertices at that scope that are not of type Food are filtered out and discarded.

{
Species {
name Q@output (out_name: "species_name")
out_Entity_Related {
on Species {
name @output (out_name: "entity name")

In this query, the out_Entity_Related is of Entity type. However, the query only wants to return results
where the related entity is a Species, which ... on Species ensures is the case.

10 Chapter 2. Features

GraphQL Compiler

Constraints and Rules

¢ Must be the only selection in scope. No field may exist in the same scope as a type coercion. No scope may
contain more than one type coercion.

Meta fields

Meta fields are fields that do not represent a property/column in the underlying vertex type. They are also an advanced
compiler feature. Before continuing, readers should familiarize themselves with the various qguery directives supported
by the compiler.

__typename

The compiler supports the standard GraphQL meta field ___t ypename, which returns the runtime type of the scope
where the field is found. Assuming the GraphQL schema matches the database’s schema, the runtime type will always
be a subtype of (or exactly equal to) the static type of the scope determined by the GraphQL type system. Below, we
provide an example query in which the runtime type is a subtype of the static type, but is not equal to it.

The ___typename field is treated as a property field of type St ring, and supports all directives that can be applied
to any other property field.

Example Use

Entity {
__typename Qoutput (out_name: "entity_ type")
name @output (out_name: "entity_ name")

This query returns one row for each Entity vertex. The scope in which __typename appears is of static type
Entity. However, Animal is a type of Entity, as are Species, Food, and others. Vertices of all subtypes of
Entity will therefore be returned, and the entity_type column that outputs the __typename field will show
their runtime type: Animal, Species, Food, etc.

_x_count

The _x_count meta field is a non-standard meta field defined by the GraphQL compiler that makes it possible to
interact with the number of elements in a scope marked @ fold. By applying directives like @output and @filter
to this meta field, queries can output the number of elements captured in the @£o1d and filter down results to select
only those with the desired fold sizes.

We use the _x__ prefix to signify that this is an extension meta field introduced by the compiler, and not part of the
canonical set of GraphQL meta fields defined by the GraphQL specification. We do not use the GraphQL standard
double-underscore (__) prefix for meta fields, since all names with that prefix are explicitly reserved and prohibited
from being used in directives, fields, or any other artifacts.

2.1. Language Specification 11

https://facebook.github.io/graphql/draft/#sec-Reserved-Names
https://facebook.github.io/graphql/draft/#sec-Reserved-Names

GraphQL Compiler

Adding the _x_count meta field to your schema

Since the _x_count meta field is not currently part of the GraphQL standard, it has to be explicitly added to all
interfaces and types in your schema. There are two ways to do this.

The preferred way to do this is to use the EXTENDED_META_FIELD_DEFINITIONS constant as a starting point
for building your interfaces’ and types’ field descriptions:

from graphgl import GraphQLInt, GraphQLField, GraphQLObjectType, GraphQLString
from graphgl compiler import EXTENDED_META_FIELD_DEFINITIONS
fields = EXTENDED_META_FIELD_DEFINITIONS.copy ()
fields.update ({
'foo': GraphQLField (GraphQLString),
'bar': GraphQLField (GraphQLInt),
etc.
})
graphgl_type = GraphQLObjectType ('MyType', fields)
etc.

If you are not able to programmatically define the schema, and instead simply have a pre-
made GraphQL schema object that you are able to mutate, the alternative approach is via the
insert_meta_fields_into_existing_schema () helper function defined by the compiler:

assuming that existing schema is your GraphQL schema object
insert_meta_fields_into_existing_schema (existing_schema)
existing_schema was mutated in-place and all custom meta-fields were added

Example Use

Animal {
name @output (out_name: "name")
out_Animal_ParentOf @fold {
_x_count @output (out_name: "number_ of children")
name Q@output (out_name: "child names")

This query returns one row for each Animal vertex. Each row contains its name, and the number and names
of its children. While the output type of the child_names selection is a list of strings, the output type of the
number_of_children selection is an integer.

{

Animal {
name (@output (out_name: "name")
out_Animal_ParentOf @fold {
_x_count @filter (op_name: ">=", value: ["Smin_children"])
@output (out_name: "number of children")
name @filter (op_name: "has_substring", value: ["Ssubstr"])
@output (out_name: "child names")

Here, we’ve modified the above query to add two more filtering constraints to the returned rows:

12 Chapter 2. Features

GraphQL Compiler

e child Animal vertices must contain the value of $substr as a substring in their name, and
* Animal vertices must have at least Smin_children children that satisfy the above filter.

Importantly, any filtering on _x_count is applied after any other filters and type coercions that are present in the
@fold in question. This order of operations matters a lot: selecting Animal vertices with 3+ children, then filtering
the children based on their names is not the same as filtering the children first, and then selecting Animal vertices
that have 3+ children that matched the earlier filter.

Constraints and Rules

e The _x_count field is only allowed to appear within a vertex field marked @fold.
* Filtering on _x_ count is always applied after any other filters and type coercions present in that @fold.

* Filtering or outputting the value of the _x_count field must always be done at the innermost scope of the
@fold. It is invalid to expand vertex fields within a @fold after filtering or outputting the value of the
__x_count meta field.

How is filtering on _x_count different from @filter with has_edge_degree?

The has_edge_degree filter allows filtering based on the number of edges of a particular type. There are situations
in which filtering with has_edge_degree and filtering using = on _x_ count produce equivalent queries. Here
is one such pair of queries:

{

Species {

name Q@output (out_name: "name")
in_Animal_OfSpecies @filter (op_name: "has_edge_degree", value: ["Snum_animals
="1) {
uuid

and

Species {
name (@output (out_name: "name")
in_Animal_OfSpecies @fold {
_x_count @filter (op_name: "=", value: ["$num_animals"])

}

In both of these queries, we ask for the names of the Species vertices that have precisely $num_animals members.
However, we have expressed this question in two different ways: once as a property of the Species vertex (“the
degree of the in_Animal_OfSpeciesis $num_animals”), and once as a property of the list of Animal vertices
produced by the @fold (“the number of elements in the @fold is $num_animals”™).

When we add additional filtering within the Animal vertices of the in_Animal_OfSpecies vertex field, this
distinction becomes very important. Compare the following two queries:

2.1. Language Specification 13

GraphQL Compiler

Species {
name Q@output (out_name: "name")
in_Animal_OfSpecies @filter (op_name: "has_edge_degree", value: ["Snum_animals
="1) {
out_Animal_LivesIn {
name @filter (op_name: "=", wvalue: ["Slocation"])

Versus

{
Species {
name @output (out_name: "name")
in_Animal_OfSpecies @fold {
out_Animal_LivesIn {
_x_count @filter (op_name: "=", value: ["$num_animals"])
name @filter (op_name: "=", value: ["S$Slocation"])

In the first, for the purposes of the has_edge_degree filtering, the location where the animals live is irrele-
vant: the has_edge_degree only makes sure that the Species vertex has the correct number of edges of type
in_Animal_OfSpecies, and that’s it. In contrast, the second query ensures that only Species vertices that have
Snum_animals animals that live in the selected location are returned — the location matters since the @filter on
the _x_count field applies to the number of elements in the @ fo1d scope.

2.1.3 Query Directives
@optional

Without this directive, when a query includes a vertex field, any results matching that query must be able to produce
a value for that vertex field. Applied to a vertex field, this directive prevents result sets that are unable to produce a
value for that field from being discarded, and allowed to continue processing the remainder of the query.

Example Use

Animal {
name (@output (out_name: "name")
out_Animal_ParentOf @optional {
name Q@output (out_name: "child name")

}

For each Animal:

14 Chapter 2. Features

GraphQL Compiler

« if it is a parent of another animal, at least one row containing the parent and child animal’s names, in the name
and child_name columns respectively;

* if it is not a parent of another animal, a row with its name in the name column, and a null value in the
child_name column.

Constraints and Rules

* Qoptional can only be applied to vertex fields, except the root vertex field.

* It is allowed to expand vertex fields within an @optional scope. However, doing so is currently associated
with a performance penalty in MATCH.

* @recurse, @fold, or Goutput_source may not be used at the same vertex field as Qoptional.
* Qoutput_source and @fold may not be used anywhere within a scope marked Qoptional.

If a given result set is unable to produce a value for a vertex field marked Qopt ional, any fields marked @output
within that vertex field return the null value.

When filtering (via @filter) or type coercion (viae.g. ... on Animal) are applied at or within a vertex field
marked @optional, the Goptional is given precedence:

 If a given result set cannot produce a value for the optional vertex field, it is preserved: the @optional
directive is applied first, and no filtering or type coercion can happen.

* If a given result set is able to produce a value for the optional vertex field, the @optional does not apply, and
that value is then checked against the filtering or type coercion. These subsequent operations may then cause
the result set to be discarded if it does not match.

For example, suppose we have two Person vertices with names Albert and Betty such that there is a
Person_Knows edge from Albert to Betty.

Then the following query:

{

Person {
out_Person_Knows @Qoptional ({
name @filter (op_name: "=", value: ["Sname"])
}
name Qoutput (out_name: "person_name")

with runtime parameter

{

"name": "Charles"

would output

[
{ name: 'Betty' },

because the Person_Knows edge from Albert to Betty satisfies the Qopt ional directive, but Betty doesn’t
match the filter checking for a node with name Charles.

However, if no such Person_Knows edge existed from Albert, then the output would be

2.1. Language Specification 15

GraphQL Compiler

{ name: 'Albert' },
{ name: 'Betty' },

because no such edge can satisfy the @Goptional directive, and no filtering happens. In both examples, Betty is
always returned because Bet ty does not have any outgoing Person_Knows edges.

@output

Denotes that the value of a property field should be included in the output. Its out_name argument specifies the
name of the column in which the output value should be returned.

Example Use

Animal {
name Q@output (out_name: "animal name")

}

This query returns the name of each Animal in the graph, in a column named animal_ name.

Constraints and Rules

* @output can only be applied to property fields.

* The value provided for out_name may only consist of upper or lower case letters (A-Z, a—z), or underscores

Q-

* The value provided for out_name cannot be prefixed with (three underscores). This namespace is re-
served for compiler internal use.

* For any given query, all out_name values must be unique. In other words, output columns must have unique
names.

If the property field marked @output exists within a scope marked Qopt ional, result sets that are unable to assign
a value to the optional scope return the value null as the output of that property field.

@fold

Applying @fold on a scope “folds” all outputs from within that scope: rather than appearing on separate rows in the
query result, the folded outputs are coalesced into parallel lists starting at the scope marked @fold.

It is also possible to output or apply filters to the number of results captured in a @fold. The _x_count meta field
that is available within @ fo1d scopes represents the number of elements in the fold, and may be filtered or output as
usual. As _x_count represents a count of elements, marking it @output will produce an integer value. See the
_x_count section for more details.

16 Chapter 2. Features

GraphQL Compiler

Example Use

Animal {
name Qoutput (out_name: "animal name")
out_Entity_Related @fold {
on Location {
_x_count Q@output (out_name: "location_count™)
name @output (out_name: "location_names")

Each returned row has three columns: animal_name with the name of each Animal in the graph,
location_count with the related locations for that Animal, and location_names with a list of the names
of all related locations of the Animal named animal_name. If a given Animal has no related locations, its
location_names listis empty and the location_count valueis 0.

Constraints and Rules

* @fold can only be applied to vertex fields, except the root vertex field.

¢ May not exist at the same vertex field as @recurse, @optional, or Goutput_source.

Any scope that is either marked with @fo1d or is nested within a @ fold marked scope, may expand at most
one vertex field.

“No no-op @fold scopes”: within any @fold scope, there must either be at least one field that is marked
@output, or there must be a @filter applied to the _x_count field.

All Qoutput fields within a @£o1d traversal must be present at the innermost scope. It is invalid to expand
vertex fields within a @ fo1d after encountering an Qoutput directive.

* @tag, @recurse, @optional, Goutput_source and @fold may not be used anywhere within a scope
marked @fold.

e The _x_count meta field may only appear at the innermost scope of a @ fo1d marked scope.

Marking the _x_count meta field with an Qoutput produces an integer value corresponding to the number
of results within that fold.

Marking for Qoutput any field other than the _x_count meta field produces a list of results, where the
number of elements in that list is equal to the value of the _x_ count meta field, if it were selected for output.

If multiple fields (other than _x_ count) are marked @output, the resulting output lists are parallel: the ith
element of each such list is the value of the corresponding field of the ith element of the @fo1ld, for some
fixed order of elements in that @fo1d. The order of elements within the output of a @fo1d is only fixed for a
particular execution of a given query, for the results of a given @fo1d that are part of a single result set. There
is no guarantee of consistent ordering of elements for the same @fold in any of the following situations:

— across two or more result sets that are both the result of the execution of the same query;
— across different executions of the same query, or

— across different queries that contain the same @fo1d scope.

Use of type coercions or @filter at or within the vertex field marked @fold is allowed. The order of
operations is conceptually as follows:

2.1. Language Specification 17

GraphQL Compiler

— First, type coercions and filters (except @filter onthe _x_count meta field) are applied, and any data
that does not satisfy such coercions and filters is discarded. At this point, the size of the fold (i.e. its
number of results) is fixed.

— Then, any @filter directives on the _x_count meta field are applied, allowing filtering of result sets
based on the fold size. Any result sets that do not match these filters are discarded.

— Finally, if the result set was not discarded by the previous step, Qoutput directives are processed, select-
ing folded data for output.

« If the compiler is able to prove that a type coercion in the @fold scope is actually a no-op, it may optimize it
away.

Example

The following GraphQL is not allowed and will produce a GraphQLCompilationError. This query is invalid
for two separate reasons:

* It expands vertex fields after an @output directive (outputting animal_name)

e The in_Animal_ParentOf scope, which is within a scope marked @ fo1d, expands two vertex fields instead
of at most one.

Animal {
out_Animal_ParentOf @fold {
name Q@output (out_name: "animal name")
in_Animal_ParentOf {
out_Animal_OfSpecies {
uuid @output (out_name: "species_id")
}
out_Entity_Related {
on Animal {
name Qoutput (out_name: "relative_name")

The following GraphQL query is similarly not allowed and will produce a GraphQLCompilationError, since
the _x_count field is not within the innermost scope in the @fold.

{
Animal {
out_Animal_ParentOf @fold {
_x_count @output (out_name: "related_count")
out_Entity_Related {
on Animal {
name Q@output (out_name: "related_name")

Moving the _x_count field to the innermost scope results in the following valid use of @fold:

18 Chapter 2. Features

GraphQL Compiler

Animal {
out_Animal_ParentOf @fold {
out_Entity_Related {
on Animal {
_x_count QRoutput (out_name: "related_count")
name Q@output (out_name: "related_name")

Here is an example of query whose @ fold does not output any data; it returns the names of all animals that have more
than count children whose names contain the substring substr:

{

Animal {
name Q@output (out_name: "animal name")
out_Animal_ParentOf @fold {
_x_count @filter (op_name: ">=", value: ["Scount"])
name @filter (op_name: "has_substring", value: ["S$substr"])
}
}
}
@tag

The @tag directive enables filtering based on values encountered elsewhere in the same query. Applied on a property
field, it assigns a name to the value of that property field, allowing